View source: R/GeneralizedProcrustes.R
GeneralizedProcrustes | R Documentation |
Generalized Procrustes Analysis
GeneralizedProcrustes(x, tolerance = 1e-05, maxiter = 100, Plot = FALSE)
x |
Three dimensional array with the configurations. The first dimension contains the rows of the configurations, the second contains the columns and the third the number of configurations. So x[,,i] is the i-th configuration |
tolerance |
Tolerance for the Procrustes algorithm. |
maxiter |
Maximum number of iterations |
Plot |
Should the results be plotted? |
Generalized Procrustes Analysis for several configurations contained in a three-dimensional array.
An object of class GenProcustes
.This has components:
History |
History of Iterations |
X |
Initial configurations in a three dimensional array |
RotatedX |
Transformed configurations in a three dimensional array |
Scale |
Scale factors for each configuration |
Rotations |
Rotation Matrices in a three dimensional array |
rss |
Residual Sum of Squares |
Fit |
Goodness of fit as percent of expained variance |
Jose Luis Vicente-Villardon
Gower, J.C., (1975). Generalised Procrustes analysis. Psychometrika 40, 33-51.
Ingwer Borg, I. & Groenen, P. J.F. (2005). Modern Multidimensional Scaling. Theory and Applications. Second Edition. Springer
PrincipalCoordinates
data(spiders)
n=dim(spiders)[1]
p=dim(spiders)[2]
prox=array(0,c(n,2,4))
p1=BinaryProximities(spiders,coefficient=5)
prox[,,1]=PrincipalCoordinates(p1)$RowCoordinates
p2=BinaryProximities(spiders,coefficient=2)
prox[,,2]=PrincipalCoordinates(p2)$RowCoordinates
p3=BinaryProximities(spiders,coefficient=3)
prox[,,3]=PrincipalCoordinates(p3)$RowCoordinates
p4=BinaryProximities(spiders,coefficient=4)
prox[,,4]=PrincipalCoordinates(p4)$RowCoordinates
GeneralizedProcrustes(prox)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.