Nothing
# TODO: adjust function arugment order to be consistent with graphical().
#' Sequential graphical procedure based on group-sequential p-values
#'
#' `seqgspgx()` implements the sequential graphical procedure for multiple
#' hypotheses based on group-sequential p-values.
#'
#' @param pm Numeric matrix of group-sequential p-values for different
#' hypotheses (in row) at different times (in column).
#' @param alpha Numeric scalar of the overall family-wise error rate.
#' @param W Numeric vector of the weights of the graph.
#' @param G Numeric transition matrix of the graph.
#' @return List with elements
#' * `rejected`: the index set of rejected hypotheses
#' * `decisionsm`: rejection decision for each endpoint (row) at each timepoint
#' (column)
#' * `cumdecisionsm`: cumulative rejection decision for each endpoint (row) at
#' each timepoint (column)
#' @author Xiaodong Luo
#' @concept group-sequential p-values
#' @examples
#' seqgspgx(
#' pm = matrix(rep(c(0.03, 0.04, 0.01), times = 2), ncol = 3, nrow = 2),
#' alpha = 0.025,
#' W = c(0.6, 0.4),
#' G = rbind(c(0, 1), c(1, 0))
#' )
#' @export
seqgspgx=function(pm=matrix(rep(c(0.03,0.04,0.01),times=2),ncol=3,nrow=2),alpha=0.025,
W=c(0.6,0.4),G=rbind(c(0,1),c(1,0))){
n=nrow(pm)
s=ncol(pm)
mseq=seq(1,n,by=1)
decisionsm=alphaused=cumdecisionsm=matrix(0,nrow=n,ncol=s)
t=1
abc=graphical(p=pm[,t],W=W,G=G,alpha=alpha)
g=mseq[abc$rej.h>0]
rejected=mseq[g]
decisionsm[,t]=cumdecisionsm[,t]=abc$rej.h
if (s>1){
for (t in 2:s){
abc=graphical(p=pm[,t],W=W,G=G,alpha=alpha)
g=mseq[abc$rej.h>0]
rejected=union(rejected,mseq[g])
decisionsm[,t]=abc$rej.h
cumdecisionsm[,t]=(abc$rej.h|cumdecisionsm[,t-1])
}
}
if (length(rejected)>0) rejected=sort(rejected)
list(rejected=rejected,decisionsm=decisionsm,cumdecisionsm=cumdecisionsm)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.