View source: R/Distributions.R
| EVSKGenHyp | R Documentation |
Computes the theoretical values of the mean, variance,
skewness and (excess) kurtosis vectors for the d-variate Generalized
Hyperbolic distribution \mathcal{GH}\left( \lambda
,\chi ,\psi ,\boldsymbol{\mu },\boldsymbol{\Sigma },\boldsymbol{\gamma }%
\right)
defined as
\mathbf{X}=\boldsymbol{\mu }+V\boldsymbol{\gamma }+\sqrt{V}\boldsymbol{%
\Sigma }^{1/2}\mathbf{Z}
where \mathbf{Z}\in \mathcal{N}\left( 0,\mathbf{I}_{d}\right),
V \geq 0, is independent of \mathbf{Z}, is a non-negative,
scalar-valued variate, which is Generalized Inverse Gaussian (scalar
valued GIG), V\in GIG\left( \lambda ,\chi ,\psi \right).
EVSKGenHyp(lambda, chi, psi, mu, sigma, gamma)
lambda |
scalar valued |
chi |
scalar valued |
psi |
scalar valued |
mu |
a vector of dimension d |
sigma |
a dxd covariance matrix |
gamma |
a scalar value |
A list of theoretical values for the mean, variance, skewness and kurtosis vectors
A.J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: concepts, techniques and tools-revised edition. Princeton university press, 2015.
Other Moments and cumulants:
Cum2Mom(),
EVSKSkewNorm(),
EVSKSkewt(),
EVSKUniS(),
Mom2Cum(),
MomCumCFUSN(),
MomCumGenHyp(),
MomCumMVt(),
MomCumSkewNorm(),
MomCumUniS(),
MomCumZabs()
lambda <- 1
chi <- 2
psi <- 2
mu <- rep(0,2)
sigma <- diag(2)
gamma <- c(0.2,0.5)
EVSKGenHyp(lambda, chi, psi, mu, sigma, gamma)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.