View source: R/Distributions.R
| MomCumMVt | R Documentation |
The t- distribution is defined as
\mathbf{X} = \sqrt{\frac{p}{S^2}} \mathbf{Z}
where \mathbf{Z} is a multivariate standard-normal random vector
and S^2 is a \chi^2_p.
random variable independent of \mathbf{Z}.
MomCumMVt(p, d, r, nCum = FALSE)
p |
degrees of freedom |
d |
dimension |
r |
highest order of moments and cumulants |
nCum |
if it is TRUE then cumulants are calculated |
The list of moments (or cumulants) in vector form
Gy.Terdik, Multivariate statistical methods - Going beyond the linear, Springer 2021 Proposition XXXXXX
Other Moments and cumulants:
Cum2Mom(),
EVSKGenHyp(),
EVSKSkewNorm(),
EVSKSkewt(),
EVSKUniS(),
Mom2Cum(),
MomCumCFUSN(),
MomCumGenHyp(),
MomCumSkewNorm(),
MomCumUniS(),
MomCumZabs()
# The first four moments for trivariate t with 10 d.f.
MomCumMVt(p=10,d=3,r=4,nCum=FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.