View source: R/Distributions.R
| EVSKSkewt | R Documentation |
Computes the theoretical values of the mean, variance,
skewness and (excess) kurtosis vectors for the d-variate Skew-t distribution St_d(\xi, \boldsymbol{\Omega},
\boldsymbol{\alpha},m)
defined as
Y = \xi + \sqrt{\frac{m}{S^2}} \mathbf{X}
where \mathbf{X} is a multivariate skew-normal random variable
SN_d(0, \boldsymbol{\Omega} , \boldsymbol{\alpha}) and S^2 is a \chi^2_m
random variable independent of \mathbf{X}.
EVSKSkewt(xi, omega, alpha, m)
xi |
A mean vector |
omega |
A |
alpha |
shape parameter d-vector |
m |
degrees of freedom |
A list of theoretical values for the mean, variance, skewness and kurtosis vectors
Gy.Terdik, Multivariate statistical methods - Going beyond the linear, Springer 2021 p.277
S. R. Jammalamadaka, E. Taufer, Gy. Terdik. On multivariate skewness and kurtosis. Sankhya A, 83(2), 607-644.
Other Moments and cumulants:
Cum2Mom(),
EVSKGenHyp(),
EVSKSkewNorm(),
EVSKUniS(),
Mom2Cum(),
MomCumCFUSN(),
MomCumGenHyp(),
MomCumMVt(),
MomCumSkewNorm(),
MomCumUniS(),
MomCumZabs()
xi <- c(0,0,0) #
alpha <- c(10,5,0) #
omega <- diag(3) #
m <- 10 #
EVSKSkewt(xi,omega,alpha,m)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.