Nothing
knitr::opts_chunk$set( eval = TRUE, collapse = TRUE, # results = "asis", include = TRUE, echo = TRUE, warning = TRUE, message = TRUE, error = TRUE, # tidy = FALSE, # crop = TRUE, # autodep = TRUE, fig.align = "center", cache = FALSE )
knitr::include_graphics(path = "nacho_hex.png")
# Install NACHO from CRAN: install.packages("NACHO") # Or the the development version from GitHub: # install.packages("remotes") remotes::install_github("mcanouil/NACHO")
cat(readLines(system.file("app", "www", "about-nacho.md", package = "NACHO"))[-c(1, 2)], sep = "\n")
print(citation("NACHO"), "html")
print(citation("NACHO"), "bibtex")
library(NACHO) library(GEOquery, quietly = TRUE, warn.conflicts = FALSE)
GSE70970
from GEO (or use your own data)data_directory <- file.path(tempdir(), "GSE70970", "Data") # Download data gse <- getGEO("GSE70970") getGEOSuppFiles(GEO = "GSE70970", baseDir = tempdir()) # Unzip data untar( tarfile = file.path(tempdir(), "GSE70970", "GSE70970_RAW.tar"), exdir = data_directory ) # Get phenotypes and add IDs targets <- pData(phenoData(gse[[1]])) targets$IDFILE <- list.files(data_directory)
GSE70970 <- load_rcc(data_directory, targets, id_colname = "IDFILE")
limma
library(limma)
selected_pheno <- GSE70970[["nacho"]][ j = lapply(unique(.SD), function(x) ifelse(x == "NA", NA, x)), .SDcols = c("IDFILE", "age:ch1", "gender:ch1", "chemo:ch1", "disease.event:ch1") ] selected_pheno <- na.exclude(selected_pheno)
head(selected_pheno)
expr_counts <- GSE70970[["nacho"]][ i = grepl("Endogenous", CodeClass), j = as.matrix( dcast(.SD, Name ~ IDFILE, value.var = "Count_Norm"), "Name" ), .SDcols = c("IDFILE", "Name", "Count_Norm") ]
expr_counts[1:5, 1:5]
Alternatively, "Accession"
number is also available.
GSE70970[["nacho"]][ i = grepl("Endogenous", CodeClass), j = as.matrix( dcast(.SD, Accession ~ IDFILE, value.var = "Count_Norm"), "Accession" ), .SDcols = c("IDFILE", "Accession", "Count_Norm") ]
samples_kept <- intersect(selected_pheno[["IDFILE"]], colnames(expr_counts)) expr_counts <- expr_counts[, samples_kept] selected_pheno <- selected_pheno[IDFILE %in% c(samples_kept)]
design <- model.matrix(~ `disease.event:ch1`, selected_pheno)
limma
eBayes(lmFit(expr_counts, design))
lm
(or any other model)GSE70970[["nacho"]][ i = grepl("Endogenous", CodeClass), j = lapply(unique(.SD), function(x) ifelse(x == "NA", NA, x)), .SDcols = c( "IDFILE", "Name", "Accession", "Count", "Count_Norm", "age:ch1", "gender:ch1", "chemo:ch1", "disease.event:ch1" ) ][ Name %in% head(unique(Name), 10) ][ j = as.data.table( coef(summary(lm( formula = Count_Norm ~ `disease.event:ch1`, data = na.exclude(.SD) ))), "term" ), by = c("Name", "Accession") ]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.