R/ordranks.R

Defines functions ordranks

Documented in ordranks

#' Computes ranks of data with one or multiple detection limits
#'
#' @description Computes the within-column ranks of data having one or more detection limits. If multiple limits are present in a column, data are first re-censored at the highest detection limit.
#' @param dat.frame A data frame. Default format is paired = `TRUE`, where for 3 chemical parameters the input format is C1 I1 C2 I2 C3 I3, a concentration column followed by its censoring indicator column.
#' @param paired An option to specify paired = `FALSE`, where the input format would be C1 C2 C3 I1 I2 I3 where the C columns contain concentrations or a detection limit, and the I columns are their associated indicators, in the same order as the concentration columns.
#' @export
#' @return Returns columns of ranks of censored data in the same order as the paired columns of input data.  For 3 chemical parameters, the data frame returned will be R1 R2 R3 where R represents the ranks of the C1 C2 C3 input data accounting for the censoring indicated by columns I1 I2 I3.
#' @references
#' Helsel, D.R., 2011. Statistics for Censored Environmental Data using Minitab and R, 2nd ed. John Wiley & Sons, USA, N.J.
#'
#' @examples
#' library(NADA) #For example data
#' data(PbHeron)
#'
#' ordranks(PbHeron[,4:15])
#'

ordranks <- function(dat.frame, paired = TRUE) {
  cols <- ncol(dat.frame)
  half <- cols/2
  dat.orig <- as.matrix(dat.frame)
  j=0;  ranks=0; DLmax=0; data.1 <- dat.orig; data.0 <- dat.orig
  if (paired) { for (i in seq(1, to=(cols-1), by=2)) {j = j+1
  data.0[,j] <- dat.orig[,i]
  data.0[,j+half] <- dat.orig[,i+1]
  nvec <- colnames(data.0)
  nvec <- nvec[seq(1, (cols-1), 2)]
  nvec <- paste("rnk.", nvec, sep="")
  } }
  else {data.0 <- dat.orig
  nvec <- colnames(data.0)
  nvec <- nvec[1:half]
  nvec <- paste("rnk.", nvec, sep="")
  }

  for (i in 1:half) {DLmax <- max(data.0[,i]*data.0[,i+half])
  data.1[,i] <- data.0[,i]*(1-data.0[,i+half])  # all <ND = 0 in data.1
  data.1[,i][data.1[,i] < DLmax] = 0   # all detects below DLmax = 0
  }
  data.2 <- data.1[,1:half]
  r.out <- data.2
  for (i in 1:half) {ranks <- rank(data.2[,i])
  if (i==1) {r.out <- ranks}
  else {r.out <- cbind(r.out, ranks)}
  }
  colnames(r.out) <- nvec
  return(r.out)
}

Try the NADA2 package in your browser

Any scripts or data that you put into this service are public.

NADA2 documentation built on April 19, 2022, 5:06 p.m.