# Mstep.hh.MSAR.VM: M step of the EM algorithm for fitting von Mises Markov... In NHMSAR: Non-Homogeneous Markov Switching Autoregressive Models

## Description

M step of the EM algorithm for fitting homogeneous Markov switching auto-regressive models, called in fit.MSAR.VM.

## Usage

 1 Mstep.hh.MSAR.VM(data, theta, FB, constr = 0) 

## Arguments

 data array of univariate or multivariate series with dimension T*N.samples*d. T: number of time steps of each sample, N.samples: number of realisations of the same stationary process, d: dimension. theta model's parameter; object of class MSAR. See also init.theta.MSAR. FB Forward-Backward results, obtained by calling Estep.MSAR function constr constraints are added to the κ parameter (A preciser)

## Details

The homogeneous MSAR model is labeled "HH" and it is written

P(X_t|X_{t-1}=x_{t-1}) = Q_{x_{t-1},x_t}

with X_t the hidden univariate process defined on \{1,\cdots,M \}

Y_t|X_t=x_t,y_{t-1},...,y_{t-p}

has a von Mises distribution with density

p_2(y_t|x_t,y_{t-s}^{t-1}) = \frac {1}{b(x_t,y_{t-s}^{t-1})} \exp≤ft(κ_0^{(x_t)} \cos(y_t-φ_0^{(x_t)})+ ∑_{\ell=1}^sκ_\ell^{(x_t)} \cos(y_t-y_{t-\ell}-φ_\ell^{(x)})\right)

which is equivalent to

p_2(y_t|x_t,y_{t-s}^{t-1}) = \frac {1}{b(x_t,y_{t-s}^{t-1})} ≤ft|\exp≤ft([γ_0^{(x_t)} + ∑_{\ell=1}^sγ_\ell^{(x_t)} e^{iy_{t-\ell}}]e^{-iy_t}\right)\right|

b(x_t,y_{t-s}^{t-1}) is a normalisation constant.

Both the real and the complex formulation are implemented. In practice, the complex version is used if the initial κ is complex.

## Value

List containing

 mu intercepts kappa von Mises AR coefficients prior prior probabilities transmat transition matrix

## Author(s)

Valerie Monbet, [email protected]

## References

Ailliot P., Bessac J., Monbet V., Pene F., (2014) Non-homogeneous hidden Markov-switching models for wind time series. JSPI.