Description Usage Arguments Details Value Author(s) References See Also
View source: R/Mstep.hn.MSAR.R
The M step contains two parts. One for the estimation of the parameters of the hidden Markov chain and the other for the parameters of the auto-regressive models. A numerical algortihm is used for the emission parameters.
| 1 | Mstep.hn.MSAR(data, theta, FB, covar = NULL, verbose = FALSE)
 | 
| data | array of univariate or multivariate series with dimension T*N.samples*d. T: number of time steps of each sample, N.samples: number of realisations of the same stationary process, d: dimension. | 
| theta | model's parameter; object of class MSAR. See also init.theta.MSAR. | 
| FB | Forward-Backward results, obtained by calling Estep.MSAR function | 
| covar | emissions covariates (the covariables act on the intercepts) | 
| verbose | if verbose is TRUE some iterations of the numerical optimisation are print on the console. | 
The default numerical optimization method is ucminf (see ucminf).
List containing
| ..$A0 | intercepts | 
| ..$A | AR coefficients | 
| ..$sigma | variance of innovation | 
| ..$prior | prior probabilities | 
| ..$transmat | transition matrix | 
| ..$par_emis | emission parameters | 
Valerie Monbet, valerie.monbet@univ-rennes1.fr
Ailliot P., Monbet V., (2012), Markov switching autoregressive models for wind time series. Environmental Modelling & Software, 30, pp 92-101.
fit.MSAR, init.theta.MSAR, Mstep.hh.MSAR
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.