Description Usage Arguments Value Author(s) References Examples
Applies the Local/Global method to estimate
a Gaussian Graphical Model (GGM) using a TMFG
-filtered network
(see and cite Barfuss et al., 2016). Also used to
convert clique and separator structure from
MFCF
into partial correlation
and precision matrices
1 2 3 4 5 6 7 8 9 |
data |
Must be a dataset |
cliques |
Cliques defined in the network. Input can be a list or matrix |
separators |
Separators defined in the network. Input can be a list or matrix |
normal |
Should data be transformed to a normal distribution?
Defaults to |
na.data |
How should missing data be handled?
For |
partial |
Should the output network's connections be the partial correlation between two nodes given all other nodes?
Defaults to |
... |
Additional arguments (deprecated arguments) |
Returns the sparse LoGo-filtered inverse covariance matrix (partial = FALSE
)
or LoGo-filtered partial correlation matrix (partial = TRUE
)
Alexander Christensen <alexpaulchristensen@gmail.com>
Barfuss, W., Massara, G. P., Di Matteo, T., & Aste, T. (2016). Parsimonious modeling with information filtering networks. Physical Review E, 94, 062306.
1 2 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.