ChangeBootAlpha | R Documentation |
For a SensMLP Class object, change the significance level of the statistical tests
ChangeBootAlpha(x, boot.alpha)
x |
|
boot.alpha |
|
SensMLP
object with changed significance level. All boot related
metrics are changed
## Load data -------------------------------------------------------------------
data("DAILY_DEMAND_TR")
fdata <- DAILY_DEMAND_TR
## Parameters of the NNET ------------------------------------------------------
hidden_neurons <- 5
iters <- 250
decay <- 0.1
################################################################################
######################### REGRESSION NNET #####################################
################################################################################
## Regression dataframe --------------------------------------------------------
# Scale the data
fdata.Reg.tr <- fdata[,2:ncol(fdata)]
fdata.Reg.tr[,3] <- fdata.Reg.tr[,3]/10
fdata.Reg.tr[,1] <- fdata.Reg.tr[,1]/1000
## TRAIN nnet NNET --------------------------------------------------------
set.seed(150)
nnetmod <- caret::train(DEM ~ .,
data = fdata.Reg.tr,
method = "nnet",
tuneGrid = expand.grid(size = c(1), decay = c(0.01)),
trControl = caret::trainControl(method="none"),
preProcess = c('center', 'scale'),
linout = FALSE,
trace = FALSE,
maxit = 300)
# Try SensAnalysisMLP
sens <- NeuralSens::SensAnalysisMLP(nnetmod, trData = fdata.Reg.tr,
plot = FALSE, boot.R=2, output_name='DEM')
NeuralSens::ChangeBootAlpha(sens, boot.alpha=0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.