CombineSens | R Documentation |
Plot of sensitivity of the neural network output respect to the inputs over the time variable from the data provided
CombineSens(object, comb_type = "mean")
object |
|
comb_type |
Function to combine the matrixes of the |
SensMLP
object with the sensitivities combined
fdata <- iris
## Parameters of the NNET ------------------------------------------------------
hidden_neurons <- 5
iters <- 250
decay <- 0.1
#' ## TRAIN nnet NNET --------------------------------------------------------
# Create a formula to train NNET
form <- paste(names(fdata)[1:ncol(fdata)-1], collapse = " + ")
form <- formula(paste(names(fdata)[5], form, sep = " ~ "))
set.seed(150)
mod <- nnet::nnet(form,
data = fdata,
linear.output = TRUE,
size = hidden_neurons,
decay = decay,
maxit = iters)
# mod should be a neural network classification model
sens <- SensAnalysisMLP(mod, trData = fdata, output_name = 'Species')
combinesens <- CombineSens(sens, "sqmean")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.