Nothing
## ----load_libraries, message=FALSE, warning=FALSE-----------------------------
library(NeuroDecodeR)
library(ggplot2)
library(dplyr)
library(tidyr)
## ----load_raster_file---------------------------------------------------------
raster_dir_name <- file.path(system.file("extdata", package = "NeuroDecodeR"),
"Zhang_Desimone_7object_raster_data_small_rda")
file_name <- "bp1001spk_01A_raster_data.rda"
load(file.path(raster_dir_name, file_name))
test_valid_raster_format(file.path(raster_dir_name, file_name))
## ----plot_raster_file---------------------------------------------------------
plot(raster_data)
## ----bin_data, eval = FALSE---------------------------------------------------
#
# library(NeuroDecodeR)
#
# save_dir_name <- tempdir()
#
# binned_file_name <- create_binned_data(raster_dir_name, file.path(save_dir_name, "ZD"),
# 150, 50, num_parallel_cores = 2)
#
## ----label_repetitions--------------------------------------------------------
binned_file_name <- system.file(file.path("extdata", "ZD_150bins_50sampled.Rda"), package="NeuroDecodeR")
label_rep_info <- get_num_label_repetitions(binned_file_name, "stimulus_ID")
plot(label_rep_info)
## ----datasource---------------------------------------------------------------
binned_file_name <- system.file(file.path("extdata", "ZD_150bins_50sampled.Rda"),
package="NeuroDecodeR")
variable_to_decode <- "stimulus_ID"
num_cv_splits <- 20
ds <- ds_basic(binned_file_name, variable_to_decode, num_cv_splits)
## ----feature_preprocessor-----------------------------------------------------
# note that the FP objects are stored in a list
# which allows multiple FP objects to be used in one analysis
fps <- list(fp_zscore())
## ----classifier---------------------------------------------------------------
cl <- cl_max_correlation()
## ----result_metrics-----------------------------------------------------------
rms <- list(rm_main_results(), rm_confusion_matrix())
## ----cross_validator----------------------------------------------------------
cv <- cv_standard(datasource = ds,
classifier = cl,
feature_preprocessors = fps,
result_metrics = rms,
num_resample_runs = 2)
## ----run_decoding-------------------------------------------------------------
DECODING_RESULTS <- run_decoding(cv)
## ----plot_tcd-----------------------------------------------------------------
plot(DECODING_RESULTS$rm_main_results)
## ----plot_line----------------------------------------------------------------
plot(DECODING_RESULTS$rm_main_results, results_to_show = 'all', type = 'line')
## ----plot_confusion_matrix----------------------------------------------------
plot(DECODING_RESULTS$rm_confusion_matrix)
## ----plot_MI------------------------------------------------------------------
plot(DECODING_RESULTS$rm_confusion_matrix, results_to_show = "mutual_information")
## ----save_results-------------------------------------------------------------
results_dir_name <- file.path(tempdir(), "results", "")
dir.create(results_dir_name)
log_save_results(DECODING_RESULTS, results_dir_name)
## ----ndr_piping_example-------------------------------------------------------
basedir_file_name <- system.file(file.path("extdata", "ZD_500bins_500sampled.Rda"),
package="NeuroDecodeR")
DECODING_RESULTS <- basedir_file_name |>
ds_basic('stimulus_ID', 6, num_label_repeats_per_cv_split = 3) |>
cl_max_correlation() |>
fp_zscore() |>
rm_main_results() |>
rm_confusion_matrix() |>
cv_standard(num_resample_runs = 2) |>
run_decoding()
plot(DECODING_RESULTS$rm_confusion_matrix)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.