Description Usage Arguments Value Author(s) References Examples
Computes the pdf, cdf, quantile and random numbers of the Weibull G distribution due to Alzaatreh et al. (2013) specified by the pdf
f (x) = \frac {c}{β} \frac {g (x)}{1 - G (x)} ≤ft\{ -\frac {\log ≤ft[ 1 - G (x) \right]}{β} \right\}^{c - 1} \exp ≤ft\{ -≤ft[ -\frac {\log ≤ft[ 1 - G (x) \right]}{β} \right]^c \right\}
for G any valid cdf, g the corresponding pdf, β > 0, the scale parameter and c > 0, the shape parameter. Also computes the Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status
1 2 3 4 5 |
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of probabilities at which the quantile needs to be computed |
n |
number of random numbers to be generated |
beta |
the value of the scale parameter, must be positive, the default is 1 |
c |
the value of the shape parameter, must be positive, the default is 1 |
spec |
a character string specifying the distribution of G and g (for example, "norm" if G and g correspond to the standard normal). |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
... |
other parameters |
g |
same as spec but must be one of chisquare ("chisq"), exponential ("exp"), F ("f"), gamma ("gamma"), lognormal ("lognormal"), Weibull ("weibull"), Burr XII ("burrxii"), Chen ("chen"), Frechet ("frechet"), Gompertz ("gompertz"), linear failure rate ("lfr"), log-logistic ("log-logistic"), Lomax ("lomax") and Rayleigh ("rayleigh"). Each of these distributions has one parameter ( |
data |
a vector of data values for which the distribution is to be fitted |
starts |
initial values of (beta, c, r) if |
method |
the method for optimizing the log likelihood function. It can be one of |
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the quantile values computed at p
or an object of the same length as n
, giving the random numbers generated, or an object giving the values of Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status.
Saralees Nadarajah, Ricardo Rocha
S. Nadarajah and R. Rocha, Newdistns: An R Package for New Families of Distributions, Journal of Statistical Software, 69(10), 1-32, doi:10.18637/jss.v069.i10
A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, METRON 71 (2013) 63-79
1 2 3 4 5 6 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.