Analysis of a matrix of polytomous items using Nominal Logistic Biplots (NLB) according to HernandezSanchez and VicenteVillardon (2013). The NLB procedure extends the binary logistic biplot to nominal (polytomous) data. The individuals are represented as points on a plane and the variables are represented as convex prediction regions rather than vectors as in a classical or binary biplot. Using the methods from Computational Geometry, the set of prediction regions is converted to a set of points in such a way that the prediction for each individual is established by its closest "category point". Then interpretation is based on distances rather than on projections. In this package we implement the geometry of such a representation and construct computational algorithms for the estimation of parameters and the calculation of prediction regions.
Package details 


Author  Julio Cesar Hernandez Sanchez, Jose Luis VicenteVillardon 
Maintainer  Julio Cesar Hernandez Sanchez <[email protected]> 
License  GPL (>= 2) 
Version  0.2 
Package repository  View on CRAN 
Installation 
Install the latest version of this package by entering the following in R:

Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.