PCoA: Principal Coordinates Analysis

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/PCoA.R

Description

This function calculates principal coordinates analysis using a distante matrix among a set of objets.

Usage

1
PCoA(dis, r = 2)

Arguments

dis

Distance matrix between a set ob objects.

r

Number of dimensions for the solution.

Value

An object with has some components:

EigenValues

Eigenvalues of the inner products matrix

Inertia

Variance (Inertia) accounted for each dimension

RowCoordinates

Coordinates for the rows in the reduced space

RowQualities

Qualities of representation of the objects. Squared cosines between the points (vectors) in the full space and the points in the reduced space. Values near 1 indicate good quality

Author(s)

Jose Luis Vicente-Villardon,Julio Cesar Hernandez Sanchez

Maintainer: Jose Luis Vicente-Villardon <villardon@usal.es>

References

Gower,J.C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53, 325–338.

See Also

NominalDistances

Examples

1
2
3
4
5

Example output

Loading required package: mirt
Loading required package: stats4
Loading required package: lattice
Loading required package: gmodels
Loading required package: MASS
$EigenValues
[1] 7.487101e-01 5.492392e-01 3.847255e-01 3.170345e-01 1.439372e-01
[6] 2.778197e-02 5.615604e-18

$Inertia
[1] 3.448007e+01 2.529391e+01 1.771762e+01 1.460028e+01 6.628689e+00
[6] 1.279433e+00 2.586133e-16

$RowCoordinates
            [,1]        [,2]
[1,] -0.35071674 -0.25772261
[2,]  0.31933756  0.24846901
[3,]  0.09130413  0.20561075
[4,]  0.41624778 -0.10782157
[5,] -0.18199117  0.40888205
[6,] -0.51160453 -0.05340979
[7,]  0.21742298 -0.44400785

$RowQualities
             [,1]         [,2]
[1,] 1.642855e-01 8.871383e-02
[2,] 1.856686e-01 1.124043e-01
[3,] 2.166855e-02 1.098856e-01
[4,] 5.465089e-01 3.666948e-02
[5,] 2.301058e-01 1.161510e+00
[6,] 9.421188e+00 1.026783e-01
[7,] 8.418107e+15 3.510628e+16

NominalLogisticBiplot documentation built on May 2, 2019, 6:03 a.m.