Description Usage Arguments Author(s) Examples
Produces a Venn diagram showing the number of common metabolites.
| 1 2 3 | 
| lnames | A list of up to three vectors, e.g. metabolite names. | 
| group.labels | A vector of reference values to be plotted, such as an internal standard or sample weights. | 
| saveplot | A logical indication whether to save the plot produced. | 
| savetype | The required format for the plot to be saved in. Threre is a
choice of  | 
| plotname | Name of the output file if the file is to be saved. This is the general name for all the graphs and the specific type prefix will be added automatically. | 
| main | A title for the plot. | 
| cexval | The font size of the text labels. | 
| asp | The aspect ratio of the plot. A value of 1 produces a square plot region. | 
| ... | Other graphical parameters. See  | 
Alysha M De Livera
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |  
data("alldata_eg")
featuredata_eg<-alldata_eg$featuredata
dataview(featuredata_eg)
sampledata_eg<-alldata_eg$sampledata
dataview(sampledata_eg)
metabolitedata_eg<-alldata_eg$metabolitedata
dataview(metabolitedata_eg)
logdata <- LogTransform(featuredata_eg)
dataview(logdata$featuredata)
imp <-  MissingValues(logdata$featuredata,sampledata_eg,metabolitedata_eg,
                     feature.cutof=0.8, sample.cutoff=0.8, method="knn")
dataview(imp$featuredata)
#Linear model fit using unadjusted data
factormat<-model.matrix(~gender +Age +bmi, sampledata_eg)
unadjustedFit<-LinearModelFit(featuredata=imp$featuredata,
                             factormat=factormat,
                             ruv2=FALSE)
unadjustedFit
#Linear model fit using `is' normalized data 
Norm_is <-NormQcmets(imp$featuredata, method = "is", 
                    isvec = imp$featuredata[,which(metabolitedata_eg$IS ==1)[1]])
isFit<-LinearModelFit(featuredata=Norm_is$featuredata,
                     factormat=factormat,
                     ruv2=FALSE)
isFit
#Linear model fit with ruv-2 normalization
ruv2Fit<-LinearModelFit(featuredata=imp$featuredata,
                       factormat=factormat,
                       ruv2=TRUE,k=2,
                       qcmets = which(metabolitedata_eg$IS ==1))
ruv2Fit
lnames<- list(names(ruv2Fit$coef[,"Age"])[which(ruv2Fit$p.value[,"Age"]<0.05)],
             names(unadjustedFit$coef[,"Age"])[which(unadjustedFit$p.value[,"Age"]<0.05)],
             names(isFit$coef[,"Age"])[which(isFit$p.value[,"Age"]<0.05)])
VennPlot(lnames, group.labels=c("ruv2","unadjusted","is"))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.