Nothing
#' Body Fat Prediction Dataset
#'
#' Lists estimates of the percentage of body fat determined by underwater
#' weighing and various body circumference measurements for 252 men.
#' Accurate measurement of body fat is inconvenient/costly and it is desirable to have easy methods of estimating body fat that are not inconvenient/costly.
#'
#' The variables listed below, from left to right, are:
#' \itemize{
#' \item Density determined from underwater weighing
#' \item Age (years)
#' \item Weight (lbs)
#' \item Height (inches)
#' \item Neck circumference (cm)
#' \item Chest circumference (cm)
#' \item Abdomen 2 circumference (cm)
#' \item Hip circumference (cm)
#' \item Thigh circumference (cm)
#' \item Knee circumference (cm)
#' \item Ankle circumference (cm)
#' \item Biceps (extended) circumference (cm)
#' \item Forearm circumference (cm)
#' \item Wrist circumference (cm)
#' }
#'
#' @docType data
#' @keywords datasets internal
#' @format A data frame with 252 rows and 15 covariate variables and 1 response variable
#' @source \url{https://www.kaggle.com/datasets/fedesoriano/body-fat-prediction-dataset}
#' @references Bailey, Covert (1994). Smart Exercise: Burning Fat, Getting Fit, Houghton-Mifflin Co., Boston, pp. 179-186.
#' @name body_fat
#'
#' @seealso \code{\link{breast_cancer}} \code{\link{seeds}}
#' @examples
#' data(body_fat)
#' set.seed(221212)
#' train <- sample(1:252, 60)
#' train_data <- data.frame(body_fat[train, ])
#' test_data <- data.frame(body_fat[-train, ])
#'\donttest{
#' forest <- ODRF(Density ~ ., train_data, split = "mse", parallel = FALSE, ntrees = 50)
#' pred <- predict(forest, test_data[, -1])
#' # estimation error
#' mean((pred - test_data[, 1])^2)
#'}
#' tree <- ODT(Density ~ ., train_data, split = "mse")
#' pred <- predict(tree, test_data[, -1])
#' # estimation error
#' mean((pred - test_data[, 1])^2)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.