Nothing
#' seeds Data Set
#'
#' Measurements of geometrical properties of kernels belonging to three different varieties of wheat.
#' A soft X-ray technique and GRAINS package were used to construct all seven, real-valued attributes.
#'
#' The variables listed below, from left to right, are:
#' \itemize{
#' \item area A
#' \item perimeter P
#' \item compactness C = 4*pi*A/P^2
#' \item length of kernel
#' \item width of kernel
#' \item asymmetry coefficient
#' \item length of kernel groove
#' \item varieties of wheat (1, 2, 3 for Kama, Rosa and Canadian respectively)
#' }
#'
#' @docType data
#' @keywords datasets internal
#' @format A data frame with 209 rows and 7 covariate variables and 1 response variable.
#' @source \url{https://archive.ics.uci.edu/ml/datasets/seeds}
#' @references M. Charytanowicz, J. Niewczas, P. Kulczycki, P.A. Kowalski, S. Lukasik, S. Zak, 'A Complete Gradient Clustering Algorithm for Features Analysis of X-ray Images', in: Information Technologies in Biomedicine, Ewa Pietka, Jacek Kawa (eds.), Springer-Verlag, Berlin-Heidelberg, 2010, pp. 15-24.
#' @name seeds
#'
#' @seealso \code{\link{body_fat}} \code{\link{breast_cancer}}
#' @examples
#' data(seeds)
#' set.seed(221212)
#' train <- sample(1:209, 80)
#' train_data <- data.frame(seeds[train, ])
#' test_data <- data.frame(seeds[-train, ])
#'
#' forest <- ODRF(varieties_of_wheat ~ ., train_data,
#' split = "gini", parallel = FALSE, ntrees = 50
#' )
#' pred <- predict(forest, test_data[, -8])
#' # classification error
#' (mean(pred != test_data[, 8]))
#'
#' tree <- ODT(varieties_of_wheat ~ ., train_data, split = "gini")
#' pred <- predict(tree, test_data[, -8])
#' # classification error
#' (mean(pred != test_data[, 8]))
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.