OHPL.sim: Generate simulation data for benchmarking sparse regressions...

View source: R/OHPL.sim.R

OHPL.simR Documentation

Generate simulation data for benchmarking sparse regressions (Gaussian response)

Description

Generate simulation data (Gaussian case) following the settings in Xiao and Xu (2015).

Usage

OHPL.sim(
  n = 100,
  p = 100,
  rho = 0.8,
  coef = rep(1, 10),
  snr = 3,
  p.train = 0.5,
  seed = 1001
)

Arguments

n

Number of observations.

p

Number of variables.

rho

Correlation base for generating correlated variables.

coef

Vector of non-zero coefficients.

snr

Signal-to-noise ratio (SNR).

p.train

Percentage of training set.

seed

Random seed for reproducibility.

Value

A list containing x.tr, x.te, y.tr, and y.te.

Author(s)

Nan Xiao <\url{https://nanx.me}>

References

Nan Xiao and Qing-Song Xu. (2015). Multi-step adaptive elastic-net: reducing false positives in high-dimensional variable selection. Journal of Statistical Computation and Simulation 85(18), 3755–3765.

Examples

dat <- OHPL.sim(
  n = 100, p = 100, rho = 0.8,
  coef = rep(1, 10), snr = 3, p.train = 0.5,
  seed = 1010
)

dim(dat$x.tr)
dim(dat$x.te)

OHPL documentation built on Sept. 11, 2024, 7:05 p.m.