AEB | R Documentation |
Estimate the parameters in the three-part mixture
AEB( Z, Sigma, eig = eigs_sym(Sigma, min(400, length(Z)), which = "LM"), eig_tol = 1, set_nu = c(0), set1 = c(0:10) * 0.01 + 0.01, set2 = c(0:10) * 0.01 + 0.01, setp = c(1:7) * 0.1 )
Z |
a vector of test statistics |
Sigma |
covariance matrix |
eig |
eig value information |
eig_tol |
the smallest eigen value used in the calulation |
set_nu |
a search region for nu_0 |
set1 |
a search region for tau_sqr_1 |
set2 |
a search region for tau_sqr_2 |
setp |
a search region for proportion |
Estimate the parameters in the three-part mixture Z|μ ~ N_p(μ,Σ ) where μ_i ~ π_0 δ_ {ν_0} + π_1 N(μ_1, τ_1^2) + π_2 N(μ_2, τ_2^2), i = 1, ..., p
The return of the function is a list in the form of list(nu_0, tau_sqr_1, tau_sqr_2, pi_0, pi_1, pi_2, mu_1, mu_2, Z_hat).
nu_0, tau_sqr_1, tau_sqr_2: The best combination of (ν_0, τ_1^2, τ_2^2) that minimize the total variance from the regions (D_{ν_0}, D_{τ_1^2}, D_{τ_2^2}).
pi_0, pi_1, pi_2, mu_1, mu_2: The estimates of parameters π_0, π_1, π_2, μ_1, μ_2.
Z_hat: A vector of simulated data base on the parameter estimates.
p = 500 n_col = 10 A = matrix(rnorm(p*n_col,0,1), nrow = p, ncol = n_col, byrow = TRUE) Sigma = A %*% t(A) +diag(p) Sigma = cov2cor(Sigma) #covariance matrix Z = rnorm(p,0,1) #this is just an example for testing the algorithm. #Not true test statistics with respect to Sigma best_set = AEB(Z,Sigma) print(c(best_set$pi_0, best_set$pi_1, best_set$pi_2, best_set$mu_1, best_set$mu_2)) library(MASS) ###################################### #construct a test statistic vector Z p = 1000 n_col = 4 pi_0 = 0.6 pi_1 = 0.2 pi_2 = 0.2 nu_0 = 0 mu_1 = -1.5 mu_2 = 1.5 tau_sqr_1 = 0.1 tau_sqr_2 = 0.1 A = matrix(rnorm(p*n_col,0,1), nrow = p, ncol = n_col, byrow = TRUE) Sigma = A %*% t(A) +diag(p) Sigma = cov2cor(Sigma) #covariance matrix b = rmultinom(p, size = 1, prob = c(pi_0,pi_1,pi_2)) ui = b[1,]*nu_0 + b[2,]*rnorm(p, mean = mu_1, sd = sqrt(tau_sqr_1)) + b[3,]*rnorm(p, mean = mu_2, sd = sqrt(tau_sqr_2)) # actual situation Z = mvrnorm(n = 1,ui, Sigma, tol = 1e-6, empirical = FALSE, EISPACK = FALSE) best_set =AEB(Z,Sigma) print(c(best_set$pi_0, best_set$pi_1, best_set$pi_2, best_set$mu_1, best_set$mu_2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.