FDP_compute | R Documentation |
False discovery proportion and False non-discovery proportion computation
FDP_compute(decision, ui, positive)
decision |
returns from the function Optimal_procedure_3 |
ui |
true mean vector |
positive |
TRUE/FALSE valued. TRUE: H0: ui no greater than 0. FALSE: H0: ui no less than 0. |
False discovery proportion (FDP) and False non-discovery proportion (FNP)
ui = rnorm(10,0,1) #assume this is true parameter decision = rbinom(10,1, 0.4) #assume this is decision vector FDP_compute(decision,ui,TRUE) library(MASS) ###################################### #construct a test statistic vector Z p = 1000 n_col = 4 pi_0 = 0.6 pi_1 = 0.2 pi_2 = 0.2 nu_0 = 0 mu_1 = -1.5 mu_2 = 1.5 tau_sqr_1 = 0.1 tau_sqr_2 = 0.1 A = matrix(rnorm(p*n_col,0,1), nrow = p, ncol = n_col, byrow = TRUE) Sigma = A %*% t(A) +diag(p) Sigma = cov2cor(Sigma) #covariance matrix b = rmultinom(p, size = 1, prob = c(pi_0,pi_1,pi_2)) ui = b[1,]*nu_0 + b[2,]*rnorm(p, mean = mu_1, sd = sqrt(tau_sqr_1)) + b[3,]*rnorm(p, mean = mu_2, sd = sqrt(tau_sqr_2)) # actual situation Z = mvrnorm(n = 1,ui, Sigma, tol = 1e-6, empirical = FALSE, EISPACK = FALSE) prob_p = d_value(Z,Sigma) #decision level = 0.1 #significance level decision_p = Optimal_procedure_3(prob_p,level) FDP_compute(decision_p$ai,ui,TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.