| l_value | R Documentation |
Calculating the estimates for P(μ_i ≥ 0 | Z)
l_value( Z, Sigma, best_set = AEB(Z, Sigma), eig = eigs_sym(Sigma, min(400, length(Z)), which = "LM"), sim_size = 3000, eig_value = 0.35 )
Z |
a vector of test statistics |
Sigma |
covariance matrix |
best_set |
a list of parameters (list(nu_0 = ..., tau_sqr_1 = ..., tau_sqr_2 = ..., pi_0 = ..., pi_1= ..., pi_2 = ..., mu_1 = ..., mu_2 = ...)) or returns from Fund_parameter_estimation |
eig |
eig value information |
sim_size |
simulation size |
eig_value |
the smallest eigen value used in the calulation |
a vector of estimates for P(μ_i ≥ 0 | Z)
p = 500
n_col = 10
A = matrix(rnorm(p*n_col,0,1), nrow = p, ncol = n_col, byrow = TRUE)
Sigma = A %*% t(A) +diag(p)
Sigma = cov2cor(Sigma) #covariance matrix
Z = rnorm(p,0,1) #this is just an example for testing the algorithm.
#Not true test statistics with respect to Sigma
l_value(Z,Sigma,sim_size = 5)
#To save time, we set the simulation size to be 10, but the default value is much better.
library(MASS)
######################################
#construct a test statistic vector Z
p = 1000
n_col = 4
pi_0 = 0.6
pi_1 = 0.2
pi_2 = 0.2
nu_0 = 0
mu_1 = -1.5
mu_2 = 1.5
tau_sqr_1 = 0.1
tau_sqr_2 = 0.1
A = matrix(rnorm(p*n_col,0,1), nrow = p, ncol = n_col, byrow = TRUE)
Sigma = A %*% t(A) +diag(p)
Sigma = cov2cor(Sigma) #covariance matrix
b = rmultinom(p, size = 1, prob = c(pi_0,pi_1,pi_2))
ui = b[1,]*nu_0 + b[2,]*rnorm(p, mean = mu_1,
sd = sqrt(tau_sqr_1)) + b[3,]*rnorm(p, mean = mu_2,
sd = sqrt(tau_sqr_2)) # actual situation
Z = mvrnorm(n = 1,ui, Sigma, tol = 1e-6, empirical = FALSE, EISPACK = FALSE)
l_value(Z,Sigma)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.