diagnostic-quantities | R Documentation |
Extract quantities that can be used to diagnose sampling behavior of the algorithms applied by Stan at the back-end of OncoBayes2.
## S3 method for class 'blrmfit'
log_posterior(object, ...)
## S3 method for class 'blrmfit'
nuts_params(object, pars = NULL, ...)
## S3 method for class 'blrmfit'
rhat(object, pars = NULL, ...)
## S3 method for class 'blrmfit'
neff_ratio(object, pars = NULL, ...)
object |
A |
... |
Arguments passed to individual methods. |
pars |
An optional character vector of parameter names.
For |
For more details see
bayesplot-extractors
.
The exact form of the output depends on the method.
## Setting up dummy sampling for fast execution of example
## Please use 4 chains and 100x more warmup & iter in practice
.user_mc_options <- options(
OncoBayes2.MC.warmup = 10, OncoBayes2.MC.iter = 20, OncoBayes2.MC.chains = 1,
OncoBayes2.MC.save_warmup = FALSE
)
example_model("single_agent", silent = TRUE)
head(log_posterior(blrmfit))
np <- nuts_params(blrmfit)
str(np)
# extract the number of divergence transitions
sum(subset(np, Parameter == "divergent__")$Value)
head(rhat(blrmfit))
head(neff_ratio(blrmfit))
## Recover user set sampling defaults
options(.user_mc_options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.