example-combo2_trial | R Documentation |
Example using blrm_trial
to
guide the built-in two-drug combination study example.
blrm_trial
is used to collect
and store all relevant design information for the example. Subsequent
use of the update.blrm_trial
command
allows convenient model fitting via
blrm_exnex
. The
summary.blrm_trial
method allows
exploration of the design and modeling results.
To run this example, use example_model("combo2_trial")
. See
example_model
.
Other blrm_trial combo2 example:
blrm_trial()
,
dose_info_combo2
,
drug_info_combo2
## Setting up dummy sampling for fast execution of example
## Please use 4 chains and 100x more warmup & iter in practice
.user_mc_options <- options(
OncoBayes2.MC.warmup = 10, OncoBayes2.MC.iter = 20, OncoBayes2.MC.chains = 1,
OncoBayes2.MC.save_warmup = FALSE
)
library(tibble)
library(dplyr)
library(tidyr)
# Combo2 example using blrm_trial functionality
# construct initial blrm_trial object from built-in example datasets
combo2_trial_setup <- blrm_trial(
data = hist_combo2,
dose_info = dose_info_combo2,
drug_info = drug_info_combo2,
simplified_prior = FALSE
)
# summary of dimensionality of data structures
dims <- summary(combo2_trial_setup, "dimensionality")
# Fit the initial model with the historical data and fully specified prior
combo2_trial_start <- update(
combo2_trial_setup,
## bivariate normal prior for drug A and drug B of intercept and
## log-slope
prior_EX_mu_comp =
replicate(2,
mixmvnorm(c(1,
logit(0.2), 0,
diag(c(2^2, 1))))
, FALSE),
prior_EX_tau_comp =
replicate(2,
mixmvnorm(c(1,
log(0.25), log(0.125),
diag(c(log(4)/1.96, log(4)/1.96)^2)))
, FALSE),
prior_EX_mu_inter = mixmvnorm(c(1, 0, 1.121^2)),
prior_EX_tau_inter = mixmvnorm(c(1, log(0.125), (log(4) / 1.96)^2)),
prior_is_EXNEX_comp = c(FALSE, FALSE),
prior_is_EXNEX_inter = FALSE,
prior_EX_prob_comp = matrix(1,
nrow = dims$num_groups,
ncol = 2
),
prior_EX_prob_inter = matrix(1,
nrow = nlevels(dose_info_combo2$group_id),
ncol = 1
),
prior_tau_dist = 1
)
# print summary of prior specification
prior_summary(combo2_trial_start)
# summarize inference at observed dose levels
summary(combo2_trial_start, "data_prediction")
# summarize inference at specified dose levels
summary(combo2_trial_start, "dose_prediction")
# Update again with new data
# using update() with data argument supplied
# dem <- update(combo2_trial_start, data = codata_combo2)
# alternate way using update() with add_data argument for
# new observations only (those collected after the trial
# design stage).
new_data <- filter(codata_combo2, cohort_time > 0)
combo2_trial <- update(combo2_trial_start, add_data = new_data)
summary(combo2_trial, "data") # cohort_time is tracked
summary(combo2_trial, "data_prediction")
summary(combo2_trial, "dose_prediction")
rm(dims, new_data)
## Recover user set sampling defaults
options(.user_mc_options)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.