Jeong | R Documentation |
This function estimates the preferential attachment function by Jeong's method.
Jeong(net_object ,
net_stat = get_statistics(net_object) ,
T_0_start = 0 ,
T_0_end = round(net_stat$T * 0.75) ,
T_1_start = T_0_end + 1 ,
T_1_end = net_stat$T ,
interpolate = FALSE)
net_object |
an object of class |
net_stat |
An object of class |
T_0_start |
Positive integer. The starting time-step of the |
T_0_end |
Positive integer. The ending time-step of |
T_1_start |
Positive integer. The starting time-step of the |
T_1_end |
Positive integer. The ending time-step of |
interpolate |
Logical. If |
Outputs an PA_result
object which contains the estimated attachment function. In particular, it contains the following field:
k
and A
: a degree vector and the estimated PA function.
center_k
and theta
: when we perform binning, these are the centers of the bins and the estimated PA values for those bins.
g
: the number of bins used.
alpha
and ci
: alpha
is the estimated attachment exponenet \alpha
(when assume A_k = k^\alpha
), while ci
is the confidence interval.
loglinear_fit
: this is the fitting result when we estimate \alpha
.
Thong Pham thongphamthe@gmail.com
1. Jeong, H., Néda, Z. & Barabási, A. . Measuring preferential attachment in evolving networks. Europhysics Letters. 2003;61(61):567–572. (\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1209/epl/i2003-00166-9")}).
See get_statistics
for how to create summerized statistics needed in this function.
See Newman
and only_A_estimate
for other methods to estimate the attachment function in isolation.
library("PAFit")
net <- generate_net(N = 1000 , m = 1 , mode = 1 , alpha = 1 , s = 0)
net_stats <- get_statistics(net)
result <- Jeong(net, net_stats)
# true function
true_A <- result$center_k
#plot the estimated attachment function
plot(result , net_stats)
lines(result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.