View source: R/generate_simulation.R
generate_simulated_data_from_estimated_model | R Documentation |
This function generates simulated networks from a fitted model and performs estimations on these simulated networks with the same setting used in the original estimation. Each simulated network is generated using parameters of the fitted model, while keeping other aspects of the growth process as faithfully as possible to the original observed network.
generate_simulated_data_from_estimated_model(net_object, net_stat, result, M = 5)
net_object |
an object of class |
net_stat |
An object of class |
result |
An object of class |
M |
integer. The number of simulated networks. Default value is |
Outputs a Simulated_Data_From_Fitted_Model
object, which is a list containing the following fields:
graph_list
: a list containing M
simulated graphs.
stats_list
: a list containing M
objects of class PAFit_data
, which are the results of applying get_statistics
on the simulated graphs.
result_list
: a list containing M
objects of class Full_PAFit_result
, which are the results of applying joint_estimate
on the simulated graphs.
Thong Pham thongphamthe@gmail.com
1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1371/journal.pone.0137796")}).
2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558. (\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1038/srep32558")}).
3. Pham, T., Sheridan, P. & Shimodaira, H. (2020). PAFit: An R Package for the Non-Parametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. Journal of Statistical Software 92 (3). (\Sexpr[results=rd]{tools:::Rd_expr_doi("10.18637/jss.v092.i03")}).
4. Inoue, M., Pham, T. & Shimodaira, H. (2020). Joint Estimation of Non-parametric Transitivity and Preferential Attachment Functions in Scientific Co-authorship Networks. Journal of Informetrics 14(3). (\Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.joi.2020.101042")}).
get_statistics
, joint_estimate
, plot_contribution
## Not run:
library("PAFit")
net_object <- generate_net(N = 500, m = 10, s = 10, alpha = 0.5)
net_stat <- get_statistics(net_object)
result <- joint_estimate(net_object, net_stat)
simulated_data <- generate_simulated_data_from_estimated_model(net_object, net_stat, result)
plot_contribution(simulated_data, result, which_plot = "PA")
plot_contribution(simulated_data, result, which_plot = "fit")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.