Nothing
#' @name pagfl
#' @param x of class \code{pagfl}.
#' @method print pagfl
#' @export
print.pagfl <- function(x, ...) {
cat(paste("Groups:", x$groups$n_groups), "\n")
cat("\nCall:\n")
print(x$call)
cat("\nCoefficients:\n")
print(round(x$coefficients, 5))
}
#' @name pagfl
#' @param x of class \code{pagfl}.
#' @method formula pagfl
#' @export
formula.pagfl <- function(x, ...) {
x$args$formula
}
#' @name pagfl
#' @param object of class \code{pagfl}.
#' @method df.residual pagfl
#' @export
df.residual.pagfl <- function(object, ...) {
length(object$args$labs$t) - length(unique(object$args$labs$i)) - ncol(object$coefficients) * object$groups$n_groups
}
#' @name pagfl
#' @param object of class \code{pagfl}.
#' @method summary pagfl
#' @export
summary.pagfl <- function(object, ...) {
tmp <- object[c("call", "residuals", "coefficients", "groups", "IC", "convergence", "args", "model")]
k <- ncol(tmp$coefficients)
N <- length(unique(object$args$labs$i))
i_index <- as.numeric(factor(object$args$labs$i))
measures_vec <- fitMeasures(
N = N, k = k, y = object$model[[1]], i_index = i_index,
method = object$args$method, msr = tmp$IC$msr
)
out <- c(tmp, r.df = round(measures_vec[1]), r.squared = measures_vec[2], adj.r.squared = measures_vec[3], r.se = measures_vec[4], msr = tmp$IC$msr)
class(out) <- "summary.pagfl"
return(out)
}
#' @export
print.summary.pagfl <- function(x, ...) {
cat("Call:\n")
print(x$call)
unique_i <- unique(x$args$labs$i)
N <- length(unique_i)
n_periods <- length(unique(x$args$labs$t))
lab_mat <- cbind(i = x$args$labs$i, t = x$args$labs$t)
min_max_t <- stats::quantile(sapply(unique_i, function(i) length(lab_mat[lab_mat[, 1] == i, 2])), probs = c(0, 1))
if (min_max_t[1] == min_max_t[2]) {
balanced <- "Balanced"
t_range <- min_max_t[2]
} else {
balanced <- "Unbalanced"
t_range <- paste0(min_max_t, collapse = "-")
}
cat(paste0("\n", balanced, " panel: N = ", N, ", T = ", t_range, ", obs = ", length(x$residuals), "\n\n"))
cat("Convergence reached:\n")
cat(x$convergence$convergence, paste0("(", x$convergence$iter, " iterations)\n"))
cat("\nInformation criterion:\n")
ic_vec <- c(IC = x$IC$IC, lambda = x$IC$lambda)
print(round(ic_vec, 5))
cat("\nResiduals:\n")
resid_vec <- x$residuals
quantile_vec <- round(stats::quantile(resid_vec, probs = c(0, .25, .5, .75, 1)), 5)
names(quantile_vec) <- c("Min", "1Q", "Median", "3Q", "Max")
print(quantile_vec)
if (x$groups$n_groups > 1) {
cat(paste0("\n", x$groups$n_groups), "groups:\n")
print(x$groups$groups)
} else {
cat("\n1 group\n")
}
cat("\nCoefficients:\n ")
print(round(x$coefficients, 5))
cat("\nResidual standard error:", round(x$r.se, 5), "on", x$r.df, "degrees of freedom\n")
cat("Mean squared error:", round(x$IC$msr, 5))
cat("\nMultiple R-squared:", paste0(round(x$r.squared, 5), ","), "Adjusted R-squared:", round(x$adj.r.squared, 5), "\n")
}
#' @name pagfl
#' @param object of class \code{pagfl}.
#' @method coef pagfl
#' @export
coef.pagfl <- function(object, ...) {
coef_mat <- object$coefficients
groups_hat <- object$groups$groups
beta_mat <- coef_mat[groups_hat, ]
row.names(beta_mat) <- names(groups_hat)
return(beta_mat)
}
#' @name pagfl
#' @param object An object of class \code{pagfl}.
#' @method residuals pagfl
#' @export
residuals.pagfl <- function(object, ...) {
resid_vec <- object$residuals
i_index <- object$args$labs$i
t_index <- object$args$labs$t
resid_df <- data.frame(
residuals = resid_vec,
i_index = i_index,
t_index = t_index
)
colnames(resid_df)[-1] <- object$args$labs$index
return(resid_df)
}
#' @name pagfl
#' @param object of class \code{pagfl}.
#' @method fitted pagfl
#' @export
fitted.pagfl <- function(object, ...) {
fitted_vec <- object$fitted
i_index <- object$args$labs$i
t_index <- object$args$labs$t
if (is.character(t_index)) t_index <- as.numeric(factor(t_index))
fitted_df <- data.frame(
fit = fitted_vec,
i_index = i_index,
t_index = t_index
)
plot_df <- fitted_df
colnames(fitted_df)[-1] <- object$args$labs$index
# Plot the fit if feasible
if (length(unique(i_index)) <= 20) {
if (!is.numeric(t_index)) {
suppressWarnings(t_index <- as.numeric(t_index))
if (all(is.na(t_index))) t_index <- as.integer(factor(object$args$labs$t))
plot_df$t_index <- t_index
}
plot_df$i_index <- as.character(plot_df$i_index)
plot_df$y <- object$model[[1]]
plot_df <- plot_df[order(plot_df$i_index), ]
y_name <- colnames(object$model)[1]
col_map <- c("red", "black")
names(col_map) <- c("fit", y_name)
fit_plot <- gen_fit_plot_pagfl(plot_df = plot_df, y_name = y_name, col_map = col_map)
print(fit_plot)
}
return(fitted_df)
}
gen_fit_plot_pagfl <- function(plot_df, y_name, col_map) {
t_index <- plot_df$t_index
y <- plot_df$y
fit <- plot_df$fit
ggplot2::ggplot(plot_df, ggplot2::aes(x = t_index)) +
ggplot2::geom_line(ggplot2::aes(y = y, color = y_name)) +
ggplot2::geom_line(ggplot2::aes(y = fit, color = "fit")) +
ggplot2::facet_wrap(~i_index, scales = "free") +
ggplot2::xlab("") +
ggplot2::ylab(y_name) +
ggplot2::scale_color_manual(values = col_map) +
ggplot2::labs(colour = "") +
ggplot2::theme(
panel.grid.major = ggplot2::element_blank(),
panel.grid.minor = ggplot2::element_blank(),
panel.background = ggplot2::element_rect(colour = NA, fill = NA),
panel.border = ggplot2::element_blank(),
axis.line = ggplot2::element_line(colour = "black"),
axis.text = ggplot2::element_text(size = ggplot2::rel(1), colour = "black"),
axis.ticks.length = ggplot2::unit(6, "pt"),
legend.position = "bottom",
strip.background = ggplot2::element_rect(colour = NA, fill = NA),
strip.text = ggplot2::element_text(face = "bold", size = ggplot2::rel(1)),
legend.margin = ggplot2::margin(t = -25),
legend.title = ggplot2::element_text(colour = "black", size = ggplot2::rel(1)),
legend.text = ggplot2::element_text(size = ggplot2::rel(1), colour = "black")
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.