ProteinCluster-methods: Cluster proteins based on significant protein pairs

Description Usage Arguments Value See Also Examples

Description

This function uses the p-values (or probabilities) derived from the PAND algorithm to perform agglomerative hierarchical clustering (using the unweighted group average) for proteins that form significant protein pairs.

Usage

1
ProteinCluster(Pfile, Plot=FALSE, TextScaler=50, height=10, width)

Arguments

Pfile

A data frame returned from the function SignificantPairs()

Plot

If FALSE, a dendrogram will NOT be generated

TextScaler

Scale the size of the label in the generated PDF file

height

The height of the generated PDF file

width

The width of the generated PDF file

Value

This function returns an object in the class "dendrogram". If the argument "Plot" is "TRUE", it will also plot the dendrogram.

See Also

SignificantPairs, KEGGpredict, GOpredict, SignificantSubcluster

Examples

1
2
3
4
## not run
## data(dfPPI)
## OrderAll=SignificantPairs(dfPPI)
## dendMap=ProteinCluster(Pfile=OrderAll, Plot=TRUE, TextScaler=30)

PANDA documentation built on May 2, 2019, 6:53 a.m.