| convertmtol | R Documentation |
Convert a polytomous regression to a conditional logistic regression.
convertmtol(xmat, str, yvec, subjects)
xmat |
regression matrix |
str |
stratum label |
yvec |
vector of responses |
subjects |
vector of subject labels passed directly to the output. |
Implements version of \insertCitekolassa16PHInfiniteEstimates.
The multinomial regression is converted to a conditional logistic regression, and methods of \insertCitekolassa97PHInfiniteEstimates may be applied.
This function differs from convertbaselineltolr of this package in that the former treats the richer data structure of package mlogit, and this function treats a less complicated structure.
Data in the example is the breast cancer data set breast of package coxphf.
a data set on which to apply conditional logistic regression, corresponding to the multinomial regression model.
kolassa97PHInfiniteEstimates
\insertRefkolassa16PHInfiniteEstimates
#Uses data set breast from package coxphf.
data(breast)
out<-convertstoml(Surv(breast$TIME,breast$CENS),breast[,c("T","N","G","CD")])
out1<-convertmtol(out[,c("T","N","G","CD")],out[,"chid"],out[,"choice"],
out[,"patients"])
glmout<-glm.fit(out1$xmat,out1$y,family=binomial())
#In many practice examples, the following line shows which observations to retain
#in the logistic regression example.
moderate<-(fitted(glmout)<1-1.0e-8)&(fitted(glmout)>1.0e-8)
# Proportional hazards fit illustrating infinite estimates.
coxph(Surv(TIME,CENS)~ T+ N+ G+ CD,data=breast)
# Wrong analysis naively removing covariate with infinite estimate
coxph(Surv(TIME,CENS)~ T+ N+ CD,data=breast)
summary(glm((CENS>22)~T+N+G+CD,family=binomial,data=breast))
out2<-reduceLR(out1$xmat,yvec=out1$y,keep="CD")
bestcoxout<-coxph(Surv(TIME,CENS)~ T+ N+ G+ CD,data=breast,
subset=as.numeric(unique(out1$subjects[out2$moderate])))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.