PerturbationClustering: Perturbation clustering

Description Usage Arguments Details Value References See Also Examples

View source: R/perturbation-clustering.R

Description

Perform subtyping using one type of high-dimensional data

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
PerturbationClustering(
  data,
  kMin = 2,
  kMax = 5,
  k = NULL,
  verbose = T,
  ncore = 1,
  clusteringMethod = "kmeans",
  clusteringFunction = NULL,
  clusteringOptions = NULL,
  perturbMethod = "noise",
  perturbFunction = NULL,
  perturbOptions = NULL,
  PCAFunction = NULL,
  iterMin = 20,
  iterMax = 200,
  madMin = 0.001,
  msdMin = 1e-06
)

Arguments

data

Input matrix. The rows represent items while the columns represent features.

kMin

The minimum number of clusters used for automatically detecting the number of clusters. Default value is 2.

kMax

The maximum number of clusters used for automatically detecting the number of clusters. Default value is 5.

k

The number of clusters. If k is set then kMin and kMax will be ignored.

verbose

Boolean value indicating the algorithm to run with or without logging. Default value is TRUE.

ncore

Number of cores that the algorithm should use. Default value is 1.

clusteringMethod

The name of built-in clustering algorithm that PerturbationClustering will use. Currently supported algorithm are kmeans, pam and hclust. Default value is "kmeans".

clusteringFunction

The clustering algorithm function that will be used instead of built-in algorithms.

clusteringOptions

A list of parameter will be passed to the clustering algorithm in clusteringMethod.

perturbMethod

The name of built-in perturbation method that PerturbationClustering will use, currently supported methods are noise and subsampling. Default value is "noise".

perturbFunction

The perturbation method function that will be used instead of built-in ones.

perturbOptions

A list of parameter will be passed to the perturbation method in perturbMethod.

PCAFunction

The customized PCA function that user can manually define.

iterMin

The minimum number of iterations. Default value is 20.

iterMax

The maximum number of iterations. Default value is 200.

madMin

The minimum of Mean Absolute Deviation of AUC of Connectivity matrix for each k. Default value is 1e-03.

msdMin

The minimum of Mean Square Deviation of AUC of Connectivity matrix for each k. Default value is 1e-06.

Details

PerturbationClustering implements the Perturbation Clustering algorithm of Nguyen, et al (2017) and Nguyen, et al (2019). It aims to determine the optimum cluster number and location of each sample in the clusters in an unsupervised analysis.

PerturbationClustering takes input as a numerical matrix or data frame of items as rows and features as columns. It uses a clustering algorithm as the based algorithm. Current built-in algorithms that users can use directly are kmeans, pam and hclust. The default parameters for built-in kmeans are nstart = 20 and iter.max = 1000. Users can change the parameters of built-in clustering algorithm by passing the value into clusteringOptions.

PerturbationClustering also allows users to pass their own clustering algorithm instead of using built-in ones by using clusteringFunction parameter. Once clust?eringFunction is specified, clusteringMethod will be skipped. The value of clusteringFunction must be a function that takes two arguments: data and k, where data is a numeric matrix or data frame containing data that need to be clustered, and k is the number of clusters. clusteringFunction must return a vector of labels indicating the cluster to which each sample is allocated.

PerturbationClustering uses a perturbation method to perturb clustering input data. There are two built-in methods are noise and subsampling that users can use directly by passing to perturbMethod parameter. Users can change the default value of built-in perturbation methods by passing new value into perturbOptions:

1. noise perturbation method takes two arguments: noise and noisePercent. The default values are noise = NULL and noisePercent = "median". If noise is specified. noisePercent will be skipped.
2. subsampling perturbation method takes one argument percent which has default value of 80

Users can also use their own perturbation methods by passing them into perturbFunction. Once perturbFunction is specified, perturbMethod will be skipped. The value of perturbFunction must be a function that takes one argument data - a numeric matrix or data frame containing data that need to be perturbed. perturbFunction must return an object list which is as follows:

1. data: the perturbed data
2. ConnectivityMatrixHandler: a function that takes three arguments: connectivityMatrix - the connectivity matrix generated after clustering returned data, iter - the current iteration and k - the number of cluster. This function must return a compatible connectivity matrix with the original connectivity matrix. This function aims to correct the connectivityMatrix if needed and returns the corrected version of it.
3. MergeConnectivityMatrices: a function that takes four arguments: oldMatrix, newMatrix, k and iter. The oldMatrix and newMatrix are two connectivity matrices that need to be merged, k is the cluster number and iter is the current number of iteration. This function must returns a connectivity matrix that is merged from oldMatrix and newMatrix

Value

PerturbationClustering returns a list with at least the following components:

k

The optimal number of clusters

cluster

A vector of labels indicating the cluster to which each sample is allocated

origS

A list of original connectivity matrices

pertS

A list of perturbed connectivity matrices

References

1. H Nguyen, S Shrestha, S Draghici, & T Nguyen. PINSPlus: a tool for tumor subtype discovery in integrated genomic data. Bioinformatics, 35(16), 2843-2846, (2019).

2. T Nguyen, R Tagett, D Diaz, S Draghici. A novel method for data integration and disease subtyping. Genome Research, 27(12):2025-2039, 2017.

3. T. Nguyen, "Horizontal and vertical integration of bio-molecular data", PhD thesis, Wayne State University, 2017.

See Also

kmeans, pam

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Load the dataset AML2004
data(AML2004)
data <- as.matrix(AML2004$Gene)
# Perform the clustering
result <- PerturbationClustering(data = data)

# Plot the result
condition = seq(unique(AML2004$Group[, 2]))
names(condition) <- unique(AML2004$Group[, 2])
plot(
    prcomp(data)$x,
    col = result$cluster,
    pch = condition[AML2004$Group[, 2]],
    main = "AML2004"
)
legend(
    "bottomright",
    legend = paste("Cluster ", sort(unique(result$cluster)), sep = ""),
    fill = sort(unique(result$cluster))
)
legend("bottomleft", legend = names(condition), pch = condition)

# Change kmeans parameters
result <- PerturbationClustering(
    data = data,
    clusteringMethod = "kmeans",
    clusteringOptions = list(
        iter.max = 500,
        nstart = 50
    )
)

# Change to use pam
result <- PerturbationClustering(data = data, clusteringMethod = "pam")

# Change to use hclust
result <- PerturbationClustering(data = data, clusteringMethod = "hclust")

# Pass a user-defined clustering algorithm
result <- PerturbationClustering(data = data, clusteringFunction = function(data, k){
    # this function must return a vector of cluster
    kmeans(x = data, centers = k, nstart = k*10, iter.max = 2000)$cluster
})      

# Use noise as the perturb method
result <- PerturbationClustering(data = data, 
                                 perturbMethod = "noise", 
                                 perturbOptions = list(noise = 0.3))
# or
result <- PerturbationClustering(data = data, 
                                 perturbMethod = "noise", 
                                 perturbOptions = list(noisePercent = 10))

# Change to use subsampling
result <- PerturbationClustering(data = data, 
                                 perturbMethod = "subsampling", 
                                 perturbOptions = list(percent = 90))

# Users can pass their own perturb method
result <- PerturbationClustering(data = data, perturbFunction = function(data){
   rowNum <- nrow(data)
   colNum <- ncol(data)
   epsilon <-
       matrix(
           data = rnorm(rowNum * colNum, mean = 0, sd = 1.234),
           nrow = rowNum,
           ncol = colNum
       )
   
   list(
       data = data + epsilon,
       ConnectivityMatrixHandler = function(connectivityMatrix, ...) {
           connectivityMatrix
       },
       MergeConnectivityMatrices = function(oldMatrix, newMatrix, iter, ...){
           return((oldMatrix*(iter-1) + newMatrix)/iter)
       }
   )
})

# Clustering on simulation data
# Load necessary library

if (!require("mclust")) install.packages("mclust")
library(mclust)
library(irlba)

#Generate a simulated data matrix with the size of 50,000 x 5,000
sampleNum <- 50000 # Number of samples
geneNum <- 5000 # Number of genes
subtypeNum <- 3 # Number of subtypes

# Generate expression matrix
exprs <- matrix(rnorm(sampleNum*geneNum, 0, 1), nrow = sampleNum, ncol = geneNum) 
rownames(exprs) <- paste0("S", 1:sampleNum) # Assign unique names for samples

# Generate subtypes
group <- sort(rep(1:subtypeNum, sampleNum/subtypeNum + 1)[1:sampleNum])
names(group) <- rownames(exprs)

# Make subtypes separate
for (i in 1:subtypeNum) {
   exprs[group == i, 1:100 + 100*(i-1)] <- exprs[group == i, 1:100 + 100*(i-1)] + 2
}

# Plot the data
library(irlba)
exprs.pca <- irlba::prcomp_irlba(exprs, n = 2)$x
plot(exprs.pca, main = "PCA")

#Run PINSPlus clustering:

set.seed(1)
t1 <- Sys.time()
result <- PerturbationClustering(data = exprs.pca, ncore = 1)
t2 <- Sys.time()


#Print out the running time:

time<- t2-t1

#Print out the number of clusters:

result$k

#Get cluster assignment

subtype <- result$cluster

# Here we assess the clustering accurracy using Adjusted Rand Index (ARI). 
#ARI takes values from -1 to 1 where 0 stands for a random clustering and 1 
#stands for a perfect partition result. 
if (!require("mclust")) install.packages("mclust")
library(mclust)
ari <- mclust::adjustedRandIndex(subtype, group)

#Plot the cluster assginments

colors <- as.numeric(as.character(factor(subtype)))

plot(exprs.pca, col = colors, main = "Cluster assigments for simulation data")

legend("topright", legend = paste("ARI:", ari))

legend("bottomright", fill = unique(colors),
      legend = paste("Group ", 
                     levels(factor(subtype)), ": ", 
                     table(subtype)[levels(factor(subtype))], sep = "" )
)

PINSPlus documentation built on Aug. 7, 2020, 1:06 a.m.