Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/PLMIXfunctions.R
Perform posterior predictive check to assess the goodness-of-fit of Bayesian mixtures of Plackett-Luce models with a different number of components.
1 2 | ppcheckPLMIX(pi_inv, seq_G, MCMCsampleP, MCMCsampleW, top1 = TRUE,
paired = TRUE, parallel = FALSE)
|
pi_inv |
An object of class |
seq_G |
Numeric vector with the number of components of the Plackett-Luce mixtures to be assessed. |
MCMCsampleP |
List of size |
MCMCsampleW |
List of size |
top1 |
Logical: whether the posterior predictive p-value based on the top item frequencies has to be computed. Default is |
paired |
Logical: whether the posterior predictive p-value based on the paired comparison frequencies has to be computed. Default is |
parallel |
Logical: whether parallelization should be used. Default is |
The ppcheckPLMIX
function returns two posterior predictive p-values based on two chi squared discrepancy variables involving: (i) the top item frequencies and (ii) the paired comparison frequencies. In the presence of partial sequences in the pi_inv
matrix, the same missingness patterns observed in the dataset (i.e., the number of items ranked by each sample unit) are reproduced on the replicated datasets from the posterior predictive distribution.
A list with a named element:
|
Numeric |
Cristina Mollica and Luca Tardella
Mollica, C. and Tardella, L. (2017). Bayesian Plackett-Luce mixture models for partially ranked data. Psychometrika, 82(2), pages 442–458, ISSN: 0033-3123, DOI: 10.1007/s11336-016-9530-0.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | data(d_carconf)
K <- ncol(d_carconf)
## Fit 1- and 2-component PL mixtures via MAP estimation
MAP_1 <- mapPLMIX_multistart(pi_inv=d_carconf, K=K, G=1,
n_start=2, n_iter=400*1)
MAP_2 <- mapPLMIX_multistart(pi_inv=d_carconf, K=K, G=2,
n_start=2, n_iter=400*2)
MAP_3 <- mapPLMIX_multistart(pi_inv=d_carconf, K=K, G=3,
n_start=2, n_iter=400*3)
mcmc_iter <- 30
burnin <- 10
## Fit 1- and 2-component PL mixtures via Gibbs sampling procedure
GIBBS_1 <- gibbsPLMIX(pi_inv=d_carconf, K=K, G=1, n_iter=mcmc_iter,
n_burn=burnin, init=list(p=MAP_1$mod$P_map,
z=binary_group_ind(MAP_1$mod$class_map,G=1)))
GIBBS_2 <- gibbsPLMIX(pi_inv=d_carconf, K=K, G=2, n_iter=mcmc_iter,
n_burn=burnin, init=list(p=MAP_2$mod$P_map,
z=binary_group_ind(MAP_2$mod$class_map,G=2)))
GIBBS_3 <- gibbsPLMIX(pi_inv=d_carconf, K=K, G=3, n_iter=mcmc_iter,
n_burn=burnin, init=list(p=MAP_3$mod$P_map,
z=binary_group_ind(MAP_3$mod$class_map,G=3)))
## Checking goodness-of-fit of the estimated mixtures
CHECK <- ppcheckPLMIX(pi_inv=d_carconf, seq_G=1:3,
MCMCsampleP=list(GIBBS_1$P, GIBBS_2$P, GIBBS_3$P),
MCMCsampleW=list(GIBBS_1$W, GIBBS_2$W, GIBBS_3$W))
CHECK$post_pred_pvalue
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.