plsim.MAVE | R Documentation |
MAVE (Minimum Average Variance Estimation), proposed by Xia et al. (2006) to estimate parameters in PLSiM
Y=η(Z^Tα)+X^Tβ+ε.
plsim.MAVE(...) ## S3 method for class 'formula' plsim.MAVE(formula, data, ...) ## Default S3 method: plsim.MAVE(xdat=NULL, zdat, ydat, h=NULL, zeta_i=NULL, maxStep=100, tol=1e-8, iniMethods="MAVE_ini", ParmaSelMethod="SimpleValidation", TestRatio=0.1, K = 3, seed=0, verbose=TRUE, ...)
... |
additional arguments. |
formula |
a symbolic description of the model to be fitted. |
data |
an optional data frame, list or environment containing the variables in the model. |
xdat |
input matrix (linear covariates). The model reduces to a single index model when |
zdat |
input matrix (nonlinear covariates). |
ydat |
input vector (response variable). |
h |
a numerical value or a vector for bandwidth. If |
zeta_i |
initial coefficients, optional (default: NULL). It could be obtained by the function |
maxStep |
the maximum iterations, default: 100. |
tol |
convergence tolerance, default: 1e-8. |
iniMethods |
string, optional (default: "SimpleValidation"). |
ParmaSelMethod |
the parameter for the function plsim.bw. |
TestRatio |
the parameter for the function plsim.bw. |
K |
the parameter for the function plsim.bw. |
seed |
int, default: 0. |
verbose |
bool, default: TRUE. Enable verbose output. |
eta |
estimated non-parametric part \hat{η}(Z^T{\hat{α} }). |
zeta |
estimated coefficients. |
data |
data information including |
y_hat |
|
mse |
mean squares erros between |
variance |
variance of |
r_square |
multiple correlation coefficient. |
Z_alpha |
Z^T{\hat{α}}. |
Y. Xia, W. Härdle. Semi-parametric estimation of partially linear single-index models. Journal of Multivariate Analysis, 2006, 97(5): 1162-1184.
# EXAMPLE 1 (INTERFACE=FORMULA) # To estimate parameters in partially linear single-index model using MAVE. n = 30 sigma = 0.1 alpha = matrix(1,2,1) alpha = alpha/norm(alpha,"2") beta = matrix(4,1,1) x = matrix(1,n,1) z = matrix(runif(n*2),n,2) y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1) fit = plsim.MAVE(y~x|z, h=0.1) # EXAMPLE 2 (INTERFACE=DATA FRAME) # To estimate parameters in partially linear single-index model using MAVE. n = 30 sigma = 0.1 alpha = matrix(1,2,1) alpha = alpha/norm(alpha,"2") beta = matrix(4,1,1) x = rep(1,n) z1 = runif(n) z2 = runif(n) X = data.frame(x) Z = data.frame(z1,z2) x = data.matrix(X) z = data.matrix(Z) y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1) fit = plsim.MAVE(xdat=X, zdat=Z, ydat=y, h=0.1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.