plsim.ini | R Documentation |
Xia et al.'s MAVE method is used to obtain initialized coefficients α_0 and β_0 for PLSiM
Y = η(Z^Tα) + X^Tβ + ε
.
plsim.ini(...) ## S3 method for class 'formula' plsim.ini(formula, data, ...) ## Default S3 method: plsim.ini(xdat, zdat, ydat, Method="MAVE_ini", verbose = TRUE, ...)
... |
additional arguments. |
formula |
a symbolic description of the model to be fitted. |
data |
an optional data frame, list or environment containing the variables in the model. |
xdat |
input matrix (linear covariates). The model reduces to a single index model when |
zdat |
input matrix (nonlinear covariates). |
ydat |
input vector (response variable). |
Method |
string, optional (default="MAVE_ini"). |
verbose |
bool, default: TRUE. Enable verbose output. |
zeta_i |
initial coefficients. |
Y. Xia, W. Härdle. Semi-parametric estimation of partially linear single-index models. Journal of Multivariate Analysis, 2006, 97(5): 1162-1184.
# EXAMPLE 1 (INTERFACE=FORMULA) # To obtain initial values by using MAVE methods for partially # linear single-index model. n = 50 sigma = 0.1 alpha = matrix(1,2,1) alpha = alpha/norm(alpha,"2") beta = matrix(4,1,1) # Case1: Matrix Input x = matrix(1,n,1) z = matrix(runif(n*2),n,2) y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1) zeta_i = plsim.ini(y~x|z) # Case 2: Vector Input x = rep(1,n) z1 = runif(n) z2 = runif(n) y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1) zeta_i = plsim.ini(y~x|z1+z2) # EXAMPLE 2 (INTERFACE=DATA FRAME) # To obtain initial values by using MAVE methods for partially # linear single-index model. n = 50 sigma = 0.1 alpha = matrix(1,2,1) alpha = alpha/norm(alpha,"2") beta = matrix(4,1,1) x = rep(1,n) z1 = runif(n) z2 = runif(n) X = data.frame(x) Z = data.frame(z1,z2) x = data.matrix(X) z = data.matrix(Z) y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1) zeta_i = plsim.ini(xdat=X, zdat=Z, ydat=y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.