Nothing
#' @name plsim.ini
#' @aliases plsim.ini
#' @aliases plsim.ini.formula
#' @aliases plsim.ini.default
#'
#' @title Initialize coefficients
#'
#' @description Xia \emph{et al.}'s MAVE method is used to obtain initialized
#' coefficients \eqn{\alpha_0} and \eqn{\beta_0} for PLSiM
#' \deqn{Y = \eta(Z^T\alpha) + X^T\beta + \epsilon}.
#'
#' @usage plsim.ini(\dots)
#'
#' \method{plsim.ini}{formula}(formula, data, \dots)
#'
#' \method{plsim.ini}{default}(xdat, zdat, ydat, Method="MAVE_ini", verbose = TRUE, \dots)
#'
#' @param formula a symbolic description of the model to be fitted.
#' @param data an optional data frame, list or environment containing the variables in the model.
#' @param xdat input matrix (linear covariates). The model reduces to a single index model when \code{x} is NULL.
#' @param zdat input matrix (nonlinear covariates). \code{z} should not be NULL.
#' @param ydat input vector (response variable).
#' @param Method string, optional (default="MAVE_ini").
#' @param verbose bool, default: TRUE. Enable verbose output.
#' @param \dots additional arguments.
#'
#' @return
#' \item{zeta_i}{initial coefficients. \code{zeta_i[1:ncol(z)]} is the initial coefficient vector
#' \eqn{\alpha_0}, and \code{zeta_i[(ncol(z)+1):(ncol(z)+ncol(x))]} is the initial
#' coefficient vector \eqn{\beta_0}.}
#'
#' @export
#'
#' @examples
#'
#' # EXAMPLE 1 (INTERFACE=FORMULA)
#' # To obtain initial values by using MAVE methods for partially
#' # linear single-index model.
#'
#' n = 50
#' sigma = 0.1
#'
#' alpha = matrix(1,2,1)
#' alpha = alpha/norm(alpha,"2")
#'
#' beta = matrix(4,1,1)
#'
#' # Case1: Matrix Input
#' x = matrix(1,n,1)
#' z = matrix(runif(n*2),n,2)
#' y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
#'
#' zeta_i = plsim.ini(y~x|z)
#'
#' # Case 2: Vector Input
#' x = rep(1,n)
#' z1 = runif(n)
#' z2 = runif(n)
#' y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
#'
#' zeta_i = plsim.ini(y~x|z1+z2)
#'
#'
#' # EXAMPLE 2 (INTERFACE=DATA FRAME)
#' # To obtain initial values by using MAVE methods for partially
#' # linear single-index model.
#'
#' n = 50
#' sigma = 0.1
#'
#' alpha = matrix(1,2,1)
#' alpha = alpha/norm(alpha,"2")
#' beta = matrix(4,1,1)
#'
#' x = rep(1,n)
#' z1 = runif(n)
#' z2 = runif(n)
#' X = data.frame(x)
#' Z = data.frame(z1,z2)
#'
#' x = data.matrix(X)
#' z = data.matrix(Z)
#' y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
#'
#' zeta_i = plsim.ini(xdat=X, zdat=Z, ydat=y)
#'
#' @references
#' Y. Xia, W. Härdle. \emph{Semi-parametric estimation of partially linear single-index models}.
#' Journal of Multivariate Analysis, 2006, 97(5): 1162-1184.
#'
plsim.ini = function(...)
{
UseMethod("plsim.ini")
}
plsim.ini.formula = function(formula,data,...)
{
mf = match.call(expand.dots = FALSE)
m = match(c("formula","data"),
names(mf), nomatch = 0)
mf = mf[c(1,m)]
mf.xf = mf
mf[[1]] = as.name("model.frame")
mf.xf[[1]] = as.name("model.frame")
chromoly = deal_formula(mf[["formula"]])
if (length(chromoly) != 3)
stop("Invoked with improper formula, please see plsim.est documentation for proper use")
bronze = lapply(chromoly, paste, collapse = " + ")
mf.xf[["formula"]] = as.formula(paste(" ~ ", bronze[[2]]),
env = environment(formula))
mf[["formula"]] = as.formula(paste(bronze[[1]]," ~ ", bronze[[3]]),
env = environment(formula))
formula.all = terms(as.formula(paste(" ~ ",bronze[[1]]," + ",bronze[[2]], " + ",bronze[[3]]),
env = environment(formula)))
orig.class = if (missing(data))
sapply(eval(attr(formula.all, "variables"), environment(formula.all)),class)
else sapply(eval(attr(formula.all, "variables"), data, environment(formula.all)),class)
arguments.mfx = chromoly[[2]]
arguments.mf = c(chromoly[[1]],chromoly[[3]])
mf[["formula"]] = terms(mf[["formula"]])
mf.xf[["formula"]] = terms(mf.xf[["formula"]])
mf = tryCatch({
eval(mf,parent.frame())
},error = function(e){
NULL
})
temp = map_lgl(mf , ~is.factor(.x))
if(sum(temp)>0){
stop("Categorical variables are not allowed in Z or Y")
}
mf.xf = tryCatch({
eval(mf.xf,parent.frame())
},error = function(e){
NULL
})
mt <- attr(mf.xf, "terms")
if(is.null(mf)){
stop("Z should not be NULL")
}
else{
ydat = model.response(mf)
}
if(!is.null(mf.xf))
{
xdat = model.matrix(mt, mf.xf, NULL)
xdat = as.matrix(xdat[,2:dim(xdat)[2]])
}else{
xdat = mf.xf
}
zdat = mf[, chromoly[[3]], drop = FALSE]
ydat = data.matrix(ydat)
if(!is.null(xdat) & is.null(dim(xdat[,1]))){
xdat = data.matrix(xdat)
}
else if(!is.null(dim(xdat[,1]))){
xdat = xdat[,1]
}
if(is.null(dim(zdat[,1]))){
zdat = data.matrix(zdat)
}
else{
zdat = zdat[,1]
}
zeta_i = plsim.ini(xdat = xdat, zdat = zdat, ydat = ydat, ...)
return(zeta_i)
}
plsim.ini.default = function(xdat, zdat, ydat,
Method="MAVE_ini", verbose = TRUE,...)
{
if(verbose)
{
cat('\n Utilize the MAVE_ini method to initialize coefficients\n')
}
data = list(x=xdat,y=ydat,z=zdat)
is.null( .assertion_for_variables(data))
class(data) = Method
x = data$z
z = data$x
y = data$y
tempz = map_lgl(x , ~is.factor(.x))
tempy = map_lgl(y , ~is.factor(.x))
if((sum(tempz)>0)|(sum(tempy)>0)){
stop("Categorical variables are not allowed in Z or Y")
}
if(!is.null(z)){
z = model.matrix(~., as.data.frame(z))
z = as.matrix(z[,2:dim(z)[2]])
}
if(is.data.frame(x))
x = data.matrix(x)
if(is.data.frame(z))
z = data.matrix(z)
if(is.data.frame(y))
y = data.matrix(y)
n = nrow(x)
dx = ncol(x)
if( is.null(z) )
{
dz = 0
}
else
{
dz = ncol(z)
}
d_xz = dx + dz
onep = matrix(1,dx,1)
onen = matrix(1,n,1)
B = diag(c(onep))
nd = 1
a = matrix(0,n,1)
h2 = 2*n^(-2/(dx+4))
eyep1 = diag(c(matrix(1,dx+1,1)))/n^2
for(iter in 1:dx)
{
ye = y - a
if( !is.null(z) )
{
fit = lm(ye~z-1)
beta = as.matrix(fit$coefficients)
ye = ye - z%*%beta
}
ab = matrix(1,dx,n)
for(i in 1:n)
{
xi = x - t(.reshapeMatrix(matrix(x[i,]),n))
kernel_xB = exp(-rowSums((xi%*%B)^2)/h2)
onexi = cbind(onen,xi)
xk = onexi*.reshapeMatrix(matrix(kernel_xB),dx+1)
abi = solve(t(xk)%*%onexi+eyep1)%*%t(xk)%*%ye
ab[,i] = abi[2:(dx+1)]
a[i] = abi[1]
}
eigen_result = eigen(ab%*%t(ab))
B0 = eigen_result$vectors
D = eigen_result$values
idx = order(D)
B = B0
B0 = B[,idx]
if(dx == 1) B0 = matrix(B0)
B[,1:nd] = B0[,dx:(dx-nd+1)]
B = B[,1:max(1,dx-iter)]
}
alpha_i = B
alpha_i = alpha_i/norm(alpha_i,"2")*sign(alpha_i[1])
if( !is.null(z) ) beta_i = beta;
if( !is.null(z) )
{
zeta_i = cbind(t(matrix(alpha_i)),t(matrix(beta_i)))
}
else
{
zeta_i = t(matrix(alpha_i))
}
return(zeta_i)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.