Nothing
#' @name plsim.MAVE
#' @aliases plsim.MAVE
#' @aliases plsim.MAVE.formula
#' @aliases plsim.MAVE.default
#'
#' @title Minimum Average Variance Estimation
#' @description MAVE (Minimum Average Variance Estimation), proposed by Xia \emph{et al.} (2006)
#' to estimate parameters in PLSiM
#' \deqn{Y=\eta(Z^T\alpha)+X^T\beta+\epsilon.}
#'
#' @usage plsim.MAVE(\dots)
#'
#' \method{plsim.MAVE}{formula}(formula, data, \dots)
#'
#' \method{plsim.MAVE}{default}(xdat=NULL, zdat, ydat, h=NULL, zeta_i=NULL, maxStep=100,
#' tol=1e-8, iniMethods="MAVE_ini", ParmaSelMethod="SimpleValidation", TestRatio=0.1,
#' K = 3, seed=0, verbose=TRUE, \dots)
#'
#' @param formula a symbolic description of the model to be fitted.
#' @param data an optional data frame, list or environment containing the variables in the model.
#' @param xdat input matrix (linear covariates). The model reduces to a single index model when \code{x} is NULL.
#' @param zdat input matrix (nonlinear covariates). \code{z} should not be NULL.
#' @param ydat input vector (response variable).
#' @param h a numerical value or a vector for bandwidth. If \code{h} is NULL, a default
#' vector c(0.01,0.02,0.05,0.1,0.5) will be given.
#' \link{plsim.bw} is employed to select the optimal bandwidth when \code{h} is a vector or NULL.
#' @param zeta_i initial coefficients, optional (default: NULL). It could be obtained by the function \code{\link{plsim.ini}}.
#' \code{zeta_i[1:ncol(z)]} is the initial coefficient vector \eqn{\alpha_0},
#' and \code{zeta_i[(ncol(z)+1):(ncol(z)+ncol(x))]} is the initial coefficient vector \eqn{\beta_0}.
#' @param maxStep the maximum iterations, default: 100.
#' @param tol convergence tolerance, default: 1e-8.
#' @param iniMethods string, optional (default: "SimpleValidation").
#' @param ParmaSelMethod the parameter for the function \link{plsim.bw}.
#' @param TestRatio the parameter for the function \link{plsim.bw}.
#' @param K the parameter for the function \link{plsim.bw}.
#' @param seed int, default: 0.
#' @param verbose bool, default: TRUE. Enable verbose output.
#' @param \dots additional arguments.
#'
#' @return
#' \item{eta}{estimated non-parametric part \eqn{\hat{\eta}(Z^T{\hat{\alpha} })}.}
#' \item{zeta}{estimated coefficients. \code{zeta[1:ncol(z)]} is \eqn{\hat{\alpha}},
#' and \code{zeta[(ncol(z)+1):(ncol(z)+ncol(x))]} is \eqn{\hat{\beta}}.}
#' \item{data}{data information including \code{x}, \code{z}, \code{y}, bandwidth \code{h},
#' initial coefficients \code{zetaini} and iteration step \code{MaxStep}.}
#' \item{y_hat}{ \code{y}'s estimates.}
#' \item{mse}{mean squares erros between \code{y} and \code{y_hat}.}
#' \item{variance}{variance of \code{y_hat}.}
#' \item{r_square}{multiple correlation coefficient.}
#' \item{Z_alpha}{ \eqn{Z^T{\hat{\alpha}}}.}
#'
#' @export
#'
#' @examples
#'
#' # EXAMPLE 1 (INTERFACE=FORMULA)
#' # To estimate parameters in partially linear single-index model using MAVE.
#'
#' n = 30
#' sigma = 0.1
#'
#' alpha = matrix(1,2,1)
#' alpha = alpha/norm(alpha,"2")
#'
#' beta = matrix(4,1,1)
#'
#' x = matrix(1,n,1)
#' z = matrix(runif(n*2),n,2)
#' y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
#'
#' fit = plsim.MAVE(y~x|z, h=0.1)
#'
#' # EXAMPLE 2 (INTERFACE=DATA FRAME)
#' # To estimate parameters in partially linear single-index model using MAVE.
#'
#' n = 30
#' sigma = 0.1
#'
#' alpha = matrix(1,2,1)
#' alpha = alpha/norm(alpha,"2")
#' beta = matrix(4,1,1)
#'
#' x = rep(1,n)
#' z1 = runif(n)
#' z2 = runif(n)
#' X = data.frame(x)
#' Z = data.frame(z1,z2)
#'
#' x = data.matrix(X)
#' z = data.matrix(Z)
#' y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
#'
#' fit = plsim.MAVE(xdat=X, zdat=Z, ydat=y, h=0.1)
#'
#' @references
#'
#' Y. Xia, W. Härdle. \emph{Semi-parametric estimation of partially linear single-index models}.
#' Journal of Multivariate Analysis, 2006, 97(5): 1162-1184.
#'
plsim.MAVE = function(...)
{
UseMethod("plsim.MAVE")
}
plsim.MAVE.formula = function(formula,data,...)
{
mf = match.call(expand.dots = FALSE)
m = match(c("formula","data"),
names(mf), nomatch = 0)
mf = mf[c(1,m)]
mf.xf = mf
mf[[1]] = as.name("model.frame")
mf.xf[[1]] = as.name("model.frame")
chromoly = deal_formula(mf[["formula"]])
if (length(chromoly) != 3)
stop("Invoked with improper formula, please see plsim.est documentation for proper use")
bronze = lapply(chromoly, paste, collapse = " + ")
mf.xf[["formula"]] = as.formula(paste(" ~ ", bronze[[2]]),
env = environment(formula))
mf[["formula"]] = as.formula(paste(bronze[[1]]," ~ ", bronze[[3]]),
env = environment(formula))
formula.all = terms(as.formula(paste(" ~ ",bronze[[1]]," + ",bronze[[2]], " + ",bronze[[3]]),
env = environment(formula)))
orig.class = if (missing(data))
sapply(eval(attr(formula.all, "variables"), environment(formula.all)),class)
else sapply(eval(attr(formula.all, "variables"), data, environment(formula.all)),class)
arguments.mfx = chromoly[[2]]
arguments.mf = c(chromoly[[1]],chromoly[[3]])
mf[["formula"]] = terms(mf[["formula"]])
mf.xf[["formula"]] = terms(mf.xf[["formula"]])
mf = tryCatch({
eval(mf,parent.frame())
},error = function(e){
NULL
})
temp = map_lgl(mf , ~is.factor(.x))
if(sum(temp)>0){
stop("Categorical variables are not allowed in Z or Y")
}
mf.xf = tryCatch({
eval(mf.xf,parent.frame())
},error = function(e){
NULL
})
mt <- attr(mf.xf, "terms")
if(is.null(mf)){
stop("Z should not be NULL")
}
else{
ydat = model.response(mf)
}
if(!is.null(mf.xf))
{
xdat = model.matrix(mt, mf.xf, NULL)
xdat = as.matrix(xdat[,2:dim(xdat)[2]])
}else{
xdat = mf.xf
}
zdat = mf[, chromoly[[3]], drop = FALSE]
ydat = data.matrix(ydat)
if(!is.null(xdat) & is.null(dim(xdat[,1]))){
xdat = data.matrix(xdat)
}
else if(!is.null(dim(xdat[,1]))){
xdat = xdat[,1]
}
if(is.null(dim(zdat[,1]))){
zdat = data.matrix(zdat)
}
else{
zdat = zdat[,1]
}
fit = plsim.MAVE(xdat = xdat, zdat = zdat, ydat = ydat, ...)
return(fit)
}
plsim.MAVE.default = function(xdat=NULL,zdat,ydat,h=NULL,zeta_i=NULL,maxStep=100,tol=1e-8,iniMethods="MAVE_ini",
ParmaSelMethod="SimpleValidation",TestRatio=0.1,K = 3,seed=0,verbose=TRUE,...)
{
data = list(x=xdat,y=ydat,z=zdat)
.assertion_for_variables(data)
x = data$x
y = data$y
z = data$z
tempz = map_lgl(z , ~is.factor(.x))
tempy = map_lgl(y , ~is.factor(.x))
if((sum(tempz)>0)|(sum(tempy)>0)){
stop("Categorical variables are not allowed in Z or Y")
}
if(!is.null(x)){
x = model.matrix(~., as.data.frame(x))
x = as.matrix(x[,2:dim(x)[2]])
}
if(is.data.frame(x))
x = data.matrix(x)
if(is.data.frame(z))
z = data.matrix(z)
if(is.data.frame(y))
y = data.matrix(y)
tmp = x
x = z
z = tmp
n = nrow(x)
dx = ncol(x)
if( is.null(z) ) dz = 0 else dz = ncol(z)
d_xz = dx + dz
if( is.null(zeta_i) )
{
zeta_i = plsim.ini(z,x,y,verbose=verbose)
}
else
{
if( length(zeta_i) < d_xz)
{
stop( "The dimension of the coeffients zeta_i is not right")
}
}
if( is.null(h) )
{
res_MAVE_simple = plsim.bw(z,x,y,
TargetMethod="MAVE",zeta_i=zeta_i,
ParmaSelMethod=ParmaSelMethod,TestRatio=TestRatio,
K=K,seed=seed,verbose=verbose)
h = res_MAVE_simple$bandwidthBest
}
if( length(h) > 1)
{
res_MAVE_simple = plsim.bw(z,x,y,bandwidthList=h,
TargetMethod="MAVE",zeta_i=zeta_i,
ParmaSelMethod=ParmaSelMethod,TestRatio=TestRatio,
K=K,seed=seed,verbose=verbose)
h = res_MAVE_simple$bandwidthBest
}
theta = zeta_i[1:dx]
if(!is.null(z)) beta = zeta_i[(dx+1):d_xz]
h2 = 2*h*h
eyepq = diag(c(matrix(1,d_xz,1)))/n^2
step1 = 0
delta1 = 2
while( (step1<maxStep) & (delta1>tol) )
{
step1 = step1 + 1
theta_old = theta
if(!is.null(z)) beta_old = beta
tmp = .reshapeMatrix(x%*%theta,n)
d = (tmp - t(tmp))^2
ker = exp(-d/h2)
ker = ker/.reshapeMatrix(matrix(rowSums(ker)),n)
md = matrix(0,n,dx*dx)
mc = matrix(0,n,dx)
me = matrix(0,n,dx)
D22 = 0
C2 = 0
mcz = matrix(0,n,dz)
mdd = matrix(0,n,dx*dz)
for(i in 1:n)
{
tmp = x - t(.reshapeMatrix(matrix(x[i,]),n))
tmp1 = .reshapeMatrix(matrix(ker[,i]),dx)*tmp
md[i,] = matrix(c(t(t(tmp1)%*%tmp)),1)
mc[i,] = colSums(tmp1)
me[i,] = t(y)%*%tmp1
if( !is.null(z) )
{
z1 = .reshapeMatrix(matrix(ker[,i]),dz)*z
D22 = D22 + t(z1)%*%z
mcz[i,] = colSums(z1)
C2 = C2 + t(y)%*%z1
mdd[i,] = matrix(c(t(tmp)%*%z1),1,dx*dz)
}
}
step2 = 0
delta2 = 2
while( (step2 < maxStep) & (delta2>tol) )
{
theta_old2 = theta
if(!is.null(z)) beta_old2 = beta
step2 = step2 + 1
if(!is.null(z)) ye = y - z%*%beta else ye = y
tmp = .reshapeMatrix(matrix(x%*%theta),n)
d1 = tmp - t(tmp)
ker1 = d1*ker
s2 = matrix(rowSums(d1*ker1))
s1 = matrix(rowSums(ker1))
s = matrix(rowSums(ker))
d = s2*s - s1*s1 + 1/n^2
a = (ker%*%ye*s2 - ker1%*%ye*s1)/d
b = (ker1%*%ye*s - ker%*%ye*s1)/d
D = matrix(c(t(t(b*b)%*%md)),dx,dx)
C = t(b)%*%me - t(b*a)%*%mc
if(!is.null(z))
{
Cz = C2 - t(a)%*%mcz
D12 = matrix(c(t(t(b)%*%mdd)),dx,dz)
D = rbind(cbind(D,D12),cbind(t(D12),D22))
C = cbind(C,Cz)
}
theta = matrix(solve(D+eyepq)%*%t(C))
if(!is.null(z)) beta = theta[(dx+1):d_xz]
theta = theta[1:dx]
if(!is.null(theta))
{
if(theta[1]==0){
si = theta[2]
}
else{
si = theta[1]
}
theta = matrix(sign(theta[1])*theta/as.vector(sqrt(t(theta)%*%theta)))
}
if(!is.null(z))
{
delta2 = max( abs(cbind(t(matrix(theta)),t(matrix(beta))) - cbind(t(matrix(theta_old2)),t(matrix(beta_old2)))) )
}
else
{
delta2 = max( abs(theta - theta_old2) )
}
if(is.na(delta2)){
theta = theta_old2
delta2 = 0
}
}
if(!is.null(z))
{
delta1 = max( abs(cbind(t(matrix(theta)),t(matrix(beta))) - cbind(t(matrix(theta_old)),t(matrix(beta_old)))) )
}
else
{
delta1 = max( abs(theta - theta_old) )
}
}
y_hat = a
if(!is.null(z))
{
zeta = cbind(t(matrix(theta)),t(matrix(beta)))
y_hat = y_hat + z%*%matrix(beta)
SiMflag = 0
}
else
{
zeta = theta
SiMflag = 1
}
data = list(x=z,y=y,z=x,h=h,
zetaini=zeta_i,MaxStep=maxStep,SiMflag = as.logical(SiMflag))
fit = list(zeta=zeta,data=data,eta=a,
Z_alpha=x%*%matrix(theta),
variance=var(y_hat),r_square=.r_square(y,y_hat),
mse=sum((y-y_hat)^2)/nrow(y),
y_hat=y_hat)
class(fit) = "pls"
return(fit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.