View source: R/adKSampleTest.R
adKSampleTest | R Documentation |
Performs Anderson-Darling k-sample test.
adKSampleTest(x, ...)
## Default S3 method:
adKSampleTest(x, g, ...)
## S3 method for class 'formula'
adKSampleTest(formula, data, subset, na.action, ...)
x |
a numeric vector of data values, or a list of numeric data vectors. |
... |
further arguments to be passed to or from methods. |
g |
a vector or factor object giving the group for the
corresponding elements of |
formula |
a formula of the form |
data |
an optional matrix or data frame (or similar: see
|
subset |
an optional vector specifying a subset of observations to be used. |
na.action |
a function which indicates what should happen when
the data contain |
The null hypothesis, H_0: F_1 = F_2 = \ldots = F_k
is tested against the alternative,
H_\mathrm{A}: F_i \ne F_j ~~(i \ne j)
, with at least
one unequality beeing strict.
This function only evaluates version 1 of the k-sample Anderson-Darling
test (i.e. Eq. 6) of Scholz and Stephens (1987).
The p-values are estimated with the extended empirical function
as implemented in ad.pval
of
the package kSamples.
A list with class "htest"
containing the following components:
a character string indicating what type of test was performed.
a character string giving the name(s) of the data.
the estimated quantile of the test statistic.
the p-value for the test.
the parameters of the test statistic, if any.
a character string describing the alternative hypothesis.
the estimates, if any.
the estimate under the null hypothesis, if any.
Scholz, F.W., Stephens, M.A. (1987) K-Sample Anderson-Darling Tests. Journal of the American Statistical Association 82, 918–924.
adAllPairsTest
, adManyOneTest
,
ad.pval
.
## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
g <- factor(x = c(rep(1, length(x)),
rep(2, length(y)),
rep(3, length(z))),
labels = c("ns", "oad", "a"))
dat <- data.frame(
g = g,
x = c(x, y, z))
## AD-Test
adKSampleTest(x ~ g, data = dat)
## BWS-Test
bwsKSampleTest(x ~ g, data = dat)
## Kruskal-Test
## Using incomplete beta approximation
kruskalTest(x ~ g, dat, dist="KruskalWallis")
## Using chisquare distribution
kruskalTest(x ~ g, dat, dist="Chisquare")
## Not run:
## Check with kruskal.test from R stats
kruskal.test(x ~ g, dat)
## End(Not run)
## Using Conover's F
kruskalTest(x ~ g, dat, dist="FDist")
## Not run:
## Check with aov on ranks
anova(aov(rank(x) ~ g, dat))
## Check with oneway.test
oneway.test(rank(x) ~ g, dat, var.equal = TRUE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.