Nothing
# --------------------------------------------------
# Test Script - Output from cv.SplitGLM Function
# --------------------------------------------------
# Required libraries
library(mvnfast)
library(PSGD)
# Context of test script
context("Verify output of cross-validation function.")
# There should be an error if we want to compute the IF TS, and no returns are provided
test_that("Error in the cross-validation function.", {
# Setting the parameters
p <- 100
n <- 40
n.test <- 1000
sparsity <- 0.2
rho <- 0.5
SNR <- 3
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
# Correlation structure
Sigma <- matrix(0, p, p)
Sigma[1:p.active, 1:p.active] <- rho
diag(Sigma) <- 1
true.beta <- c(nonzero.betas, rep(0 , p - p.active))
# Computing the noise parameter for target SNR
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma %*% true.beta)/SNR))
# Simulate some data
set.seed(1)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# # CV PSGD Ensemble
# output <- cv.PSGD(x = x.train, y = y.train, n_models = 5,
# model_type = c("Linear", "Logistic")[1], include_intercept = TRUE,
# split = c(2, 3), size = c(20, 30),
# max_iter = 20,
# cycling_iter = 0,
# n_folds = 5,
# n_threads = 1)
# psgd.coef <- coef(output, group_index = 1:object$n_models)
# psgd.predictions <- predict(output, newx = x.test, group_index = 1:object$n_models)
# mean((y.test - psgd.predictions)^2)/sigma.epsilon^2
expect_vector(numeric(ncol(x.train)+1))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.