Nothing
# @file AndromedaHelperFunctions.R
#
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
limitCovariatesToPopulation <- function(covariateData, rowIds) {
ParallelLogger::logTrace(paste0("Starting to limit covariate data to population..."))
metaData <- attr(covariateData, "metaData")
newCovariateData <- Andromeda::andromeda(
covariateRef = covariateData$covariateRef,
analysisRef = covariateData$analysisRef
)
covariateData$pop <- data.frame(rowId = rowIds)
if (inherits(covariateData, "RSQLiteConnection")) {
Andromeda::createIndex(
tbl = covariateData$pop, columnNames = "rowId",
indexName = "pop_rowIds"
)
}
on.exit(covariateData$pop <- NULL, add = TRUE)
newCovariateData$covariates <- covariateData$covariates %>%
dplyr::inner_join(covariateData$pop, by = "rowId")
if (inherits(newCovariateData, "RSQLiteConnection")) {
Andromeda::createIndex(
tbl = newCovariateData$covariates, columnNames = "covariateId",
indexName = "covariates_ncovariateIds"
)
}
metaData$populationSize <- length(rowIds)
attr(newCovariateData, "metaData") <- metaData
class(newCovariateData) <- "CovariateData"
ParallelLogger::logTrace(paste0("Finished limiting covariate data to population..."))
return(newCovariateData)
}
batchRestrict <- function(covariateData, population, sizeN = 10000000) {
ParallelLogger::logInfo("Due to data size using batchRestrict to limit covariate data to population")
start <- Sys.time()
metaData <- attr(covariateData, "metaData")
newCovariateData <- Andromeda::andromeda(
covariateRef = covariateData$covariateRef,
analysisRef = covariateData$analysisRef
)
Andromeda::batchApply(covariateData$covariates, function(tempData) {
filtered <- dplyr::inner_join(tempData, population, by = "rowId")
if ("covariates" %in% names(newCovariateData)) {
Andromeda::appendToTable(newCovariateData$covariates, data = filtered)
} else {
newCovariateData$covariates <- filtered
}
},
progressBar = TRUE,
batchSize = sizeN
)
if (inherits(newCovariateData, "RSQLiteConnection")) {
Andromeda::createIndex(
tbl = newCovariateData$covariates,
columnNames = "covariateId",
indexName = "covariates_ncovariateIds"
)
Andromeda::createIndex(
tbl = newCovariateData$covariates,
columnNames = "rowId",
indexName = "covariates_rowId"
)
Andromeda::createIndex(
tbl = newCovariateData$covariates,
columnNames = c("covariateId", "covariateValue"),
indexName = "covariates_covariateId_value"
)
}
metaData$populationSize <- nrow(population)
attr(newCovariateData, "metaData") <- metaData
class(newCovariateData) <- "CovariateData"
timeTaken <- as.numeric(Sys.time() - start, units = "mins")
ParallelLogger::logInfo(paste0("Limiting covariate data took: ", timeTaken, " mins"))
return(newCovariateData)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.