Nothing
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
testFEFun <- function(type = "none") {
result <- createFeatureEngineeringSettings(type = type)
return(result)
}
test_that("createFeatureEngineeringSettings correct class", {
featureEngineeringSettings <- testFEFun()
expect_s3_class(featureEngineeringSettings, "featureEngineeringSettings")
checkFun <- "sameData"
expect_equal(attr(featureEngineeringSettings, "fun"), checkFun)
})
if (rlang::is_installed("reticulate")) {
testUniFun <- function(k = 100) {
result <- createUnivariateFeatureSelection(k = k)
return(result)
}
}
test_that("createUnivariateFeatureSelection correct class", {
skip_if_not_installed("reticulate")
skip_on_cran()
k <- sample(1000, 1)
featureEngineeringSettings <- testUniFun(k = k)
expect_s3_class(featureEngineeringSettings, "featureEngineeringSettings")
expect_equal(featureEngineeringSettings$k, k)
expect_equal(attr(featureEngineeringSettings, "fun"), "univariateFeatureSelection")
expect_error(testUniFun(k = "ffdff"))
expect_error(testUniFun(k = NULL))
expect_error(testUniFun(k = -1))
})
test_that("univariateFeatureSelection", {
skip_if_not_installed("reticulate")
skip_on_cran()
skip_if_offline()
k <- 20 + sample(10, 1)
featureEngineeringSettings <- testUniFun(k = k)
newTrainData <- copyTrainData(trainData)
trainDataCovariateSize <- newTrainData$covariateData$covariates %>%
dplyr::tally() %>%
dplyr::pull()
reducedTrainData <- univariateFeatureSelection(
trainData = newTrainData,
featureEngineeringSettings = featureEngineeringSettings,
covariateIdsInclude = NULL
)
newDataCovariateSize <- reducedTrainData$covariateData$covariates %>%
dplyr::tally() %>%
dplyr::pull()
expect_true(newDataCovariateSize <= trainDataCovariateSize)
# expect k many covariates left
expect_equal(k, reducedTrainData$covariateData$covariateRef %>% dplyr::tally() %>% dplyr::pull())
})
test_that("createRandomForestFeatureSelection correct class", {
skip_if_not_installed("reticulate")
skip_on_cran()
ntreesTest <- sample(1000, 1)
maxDepthTest <- sample(20, 1)
featureEngineeringSettings <- createRandomForestFeatureSelection(
ntrees = ntreesTest,
maxDepth = maxDepthTest
)
expect_s3_class(featureEngineeringSettings, "featureEngineeringSettings")
expect_equal(featureEngineeringSettings$ntrees, ntreesTest)
expect_equal(featureEngineeringSettings$max_depth, maxDepthTest)
expect_equal(attr(featureEngineeringSettings, "fun"), "randomForestFeatureSelection")
# error due to params
expect_error(
createRandomForestFeatureSelection(
ntrees = -1,
maxDepth = maxDepthTest
)
)
expect_error(
createRandomForestFeatureSelection(
ntrees = "dfdfd",
maxDepth = maxDepthTest
)
)
expect_error(
createRandomForestFeatureSelection(
ntrees = 50,
maxDepth = "maxDepthTest"
)
)
expect_error(
createRandomForestFeatureSelection(
ntrees = 50,
maxDepth = -1
)
)
})
test_that("randomForestFeatureSelection", {
skip_if_not_installed("reticulate")
skip_on_cran()
skip_if_offline()
ntreesTest <- sample(1000, 1)
maxDepthTest <- sample(20, 1)
featureEngineeringSettings <- createRandomForestFeatureSelection(
ntrees = ntreesTest,
maxDepth = maxDepthTest
)
newTrainData <- copyTrainData(trainData)
trainDataCovariateSize <- newTrainData$covariateData$covariates %>%
dplyr::tally() %>%
dplyr::pull()
reducedTrainData <- randomForestFeatureSelection(
trainData = newTrainData,
featureEngineeringSettings = featureEngineeringSettings,
covariateIdsInclude = NULL
)
newDataCovariateSize <- reducedTrainData$covariateData$covariates %>%
dplyr::tally() %>%
dplyr::pull()
expect_true(newDataCovariateSize < trainDataCovariateSize)
})
test_that("featureSelection is applied on test_data", {
skip_if_not_installed("reticulate")
skip_on_cran()
skip_if_offline()
k <- 20
featureEngineeringSettings <- testUniFun(k = k)
newTrainData <- copyTrainData(trainData)
newTrainData <- univariateFeatureSelection(
trainData = newTrainData,
featureEngineeringSettings = featureEngineeringSettings,
covariateIdsInclude = NULL
)
modelSettings <- setLassoLogisticRegression()
# added try catch due to model sometimes not fitting
plpModel <- tryCatch(
{
fitPlp(newTrainData, modelSettings, analysisId = "FE")
},
error = function(e) {
return(NULL)
}
)
if (!is.null(plpModel)) { # if the model fit then check this
prediction <- predictPlp(plpModel, testData, population)
expect_true(attr(prediction, "metaData")$featureEngineering)
}
})
test_that("createSplineSettings correct class", {
featureEngineeringSettings <- createSplineSettings(
continousCovariateId = 12,
knots = 4
)
expect_s3_class(featureEngineeringSettings, "featureEngineeringSettings")
expect_equal(featureEngineeringSettings$knots, 4)
expect_equal(featureEngineeringSettings$continousCovariateId, 12)
expect_equal(attr(featureEngineeringSettings, "fun"), "splineCovariates")
expect_error(createSplineSettings(knots = "ffdff"))
expect_error(createSplineSettings(knots = NULL))
})
test_that("splineCovariates works", {
skip_if_offline()
knots <- 4
featureEngineeringSettings <- createSplineSettings(
continousCovariateId = 12101,
knots = knots
)
data(simulationProfile)
trainData <- simulatePlpData(simulationProfile, n = 200)
n <- 50
trainData$covariateData$covariates <- data.frame(
rowId = sample(trainData$cohorts$rowId, n),
covariateId = rep(12101, n),
covariateValue = sample(10, n, replace = TRUE)
)
trainData$covariateData$analysisRef <- data.frame(
analysisId = 101,
analysisName = "cond",
domainId = "madeup",
startDay = 0,
endDay = 0,
isBinary = "N",
missingMeansZero = "N"
)
trainData$covariateData$covariateRef <- data.frame(
covariateId = 12101,
covariateName = "test",
analysisId = 101,
conceptId = 1
)
newData <- splineCovariates(
trainData = trainData,
featureEngineeringSettings = featureEngineeringSettings
)
expect_true(1 < nrow(as.data.frame(newData$covariateData$analysisRef)))
expect_true((knots + 1) == nrow(as.data.frame(newData$covariateData$covariateRef)))
expect_true((knots + 1) == length(table(as.data.frame(newData$covariateData$covariates)$covariateId)))
})
test_that("createStratifiedImputationSettings correct class", {
skip_if_offline()
ageSplits <- c(33, 38, 42)
featureEngineeringSettings <- createStratifiedImputationSettings(
covariateId = 12101,
ageSplits = ageSplits
)
numSubjects <- nanoData$covariateData$covariates %>%
dplyr::pull(.data$rowId) %>%
dplyr::n_distinct()
Andromeda::appendToTable(nanoData$covariateData$covariates, data.frame(
rowId = sample(nanoData$cohorts$rowId, floor(numSubjects / 2)),
covariateId = rep(12101, floor(numSubjects / 2)),
covariateValue = sample(10, floor(numSubjects / 2), replace = TRUE)
))
Andromeda::appendToTable(nanoData$covariateData$analysisRef, data.frame(
analysisId = 101,
analysisName = "cond",
domainId = "madeup",
startDay = 0,
endDay = 0,
isBinary = "N",
missingMeansZero = "N"
))
Andromeda::appendToTable(nanoData$covariateData$covariateRef, data.frame(
covariateId = 12101,
covariateName = "test",
analysisId = 101,
conceptId = 1
))
stratifiedMeans <- calculateStratifiedMeans(
trainData = nanoData,
featureEngineeringSettings = featureEngineeringSettings
)
expect_true(nrow(stratifiedMeans) == 8)
imputedData <- imputeMissingMeans(
trainData = nanoData,
covariateId = 12101,
ageSplits = ageSplits,
stratifiedMeans = stratifiedMeans
)
expect_equal(
imputedData$covariateData$covariates %>%
dplyr::filter(.data$covariateId == 12101) %>%
dplyr::pull(.data$rowId) %>%
dplyr::n_distinct(),
numSubjects
)
})
test_that("createRareFeatureRemover works", {
remover <- createRareFeatureRemover(threshold = 0.1)
expect_equal(remover$threshold, 0.1)
expect_equal(attr(remover, "fun"), "removeRareFeatures")
expect_error(createRareFeatureRemover(threshold = -1))
expect_error(createRareFeatureRemover(threshold = "0.5"))
expect_error(createRareFeatureRemover(threshold = 1))
})
test_that("Removing rare features works", {
remover <- createRareFeatureRemover(threshold = 0.1)
removedData <- removeRareFeatures(tinyTrainData, remover)
expect_true(
removedData$covariateData$covariates %>%
dplyr::pull(.data$covariateId) %>%
dplyr::n_distinct() <=
tinyTrainData$covariateData$covariates %>%
dplyr::pull(.data$covariateId) %>%
dplyr::n_distinct()
)
metaData <- attr(removedData$covariateData, "metaData")
testSettings <- metaData$featureEngineering$removeRare$settings$featureEngineeringSettings
removedTestData <- removeRareFeatures(testData, remover, done = TRUE)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.