Nothing
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
test_that("pfi feature importance returns data.frame", {
skip_if_offline()
# limit to a sample of 2 covariates for faster test
covariates <- plpResult$model$covariateImportance %>%
dplyr::filter("covariateValue" != 0) %>%
dplyr::select("covariateId") %>%
dplyr::arrange(desc("covariateValue")) %>%
dplyr::pull()
# if the model had non-zero covariates
if (length(covariates) > 0) {
if (length(covariates) > 2) {
covariates <- covariates[1:2]
}
pfiTest <- pfi(plpResult, population, plpData,
repeats = 1,
covariates = covariates, cores = 1, log = NULL,
logthreshold = "INFO"
)
expect_equal(class(pfiTest), "data.frame")
expect_equal(sum(names(pfiTest) %in% c("covariateId", "pfi")), 2)
expect_true(all(!is.nan(pfiTest$pfi)))
}
})
test_that("pfi feature importance works with logger or without covariates", {
skip_if_offline()
pfiTest <- pfi(tinyResults, population, nanoData,
cores = 1,
covariates = NULL, log = file.path(tempdir(), "pfiLog")
)
expect_equal(class(pfiTest), "data.frame")
expect_equal(sum(names(pfiTest) %in% c("covariateId", "pfi")), 2)
expect_true(all(!is.nan(pfiTest$pfi)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.