Nothing
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
test_that("prediction inputs", {
skip_if_not_installed("Eunomia")
skip_if_offline()
# =====================================
# check prediction
# =====================================
expect_error(predictPlp(
model = NULL, population = population,
plpData = plpData
))
expect_error(predictPlp(
model = list(), population = NULL,
plpData = plpData
))
expect_error(predictPlp(
model = list(), population = population,
plpData = NULL
))
})
test_that("prediction works", {
skip_if_not_installed("Eunomia")
skip_if_offline()
# =====================================
# check prediction
# =====================================
pred <- predictPlp(
plpModel = plpResult$model,
population = population,
plpData = plpData
)
pred <- pred[order(pred$rowId), ]
tempPrediction <- plpResult$prediction[order(plpResult$prediction$rowId), ]
expect_equal(
nrow(pred),
nrow(population)
)
rowId <- tempPrediction$rowId[tempPrediction$evaluationType == "Test"][1]
expect_equal(
pred$value[pred$rowId == rowId],
tempPrediction$value[
tempPrediction$evaluationType == "Test" &
tempPrediction$rowId == rowId
]
)
# check metaData
expect_equal(length(names(attr(pred, "metaData"))), 6) # 8 if survivial
# add single person pred and compare with manual cal
# add prediction of other models
})
# predict.*
test_that("applyTidyCovariateData", {
skip_if_not_installed("Eunomia")
skip_if_offline()
covariateIds <- plpData$covariateData$covariateRef %>%
dplyr::select("covariateId") %>%
dplyr::pull()
remove <- sample(covariateIds, 10)
deletedRedundantCovariateIds <- remove[1:5]
deletedInfrequentCovariateIds <- remove[6:10]
prepocessSettings <- list(
normFactors = data.frame(
covariateId = covariateIds,
maxValue = rep(0.1, length(covariateIds))
),
deletedRedundantCovariateIds = deletedRedundantCovariateIds,
deletedInfrequentCovariateIds = deletedInfrequentCovariateIds
)
# get covariateSize before
covariateCount <- plpData$covariateData$covariates %>%
dplyr::tally() %>%
dplyr::pull()
newCovariateData <- applyTidyCovariateData(
covariateData = plpData$covariateData,
preprocessSettings = prepocessSettings
)
# some covariates removed
expect_true(newCovariateData$covariates %>% dplyr::tally() %>% dplyr::pull() < covariateCount)
newCovs <- newCovariateData$covariateRef %>%
dplyr::select("covariateId") %>%
dplyr::pull()
expect_equal(sum(covariateIds[!covariateIds %in% newCovs] %in% remove), 10)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.