Nothing
# Copyright 2025 Observational Health Data Sciences and Informatics
#
# This file is part of PatientLevelPrediction
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
test_that("setAdaBoost settings work checks", {
skip_if_not_installed("reticulate")
skip_on_cran()
adset <- setAdaBoost(
nEstimators = list(10, 50, 200),
learningRate = list(1, 0.5, 0.1),
algorithm = list("SAMME"),
seed = sample(1000000, 1)
)
expect_equal(adset$fitFunction, "fitSklearn")
expect_equal(length(adset$param), 3 * 3 * 1)
expect_equal(unique(unlist(lapply(adset$param, function(x) x[[1]]))), c(10, 50, 200))
expect_equal(unique(unlist(lapply(adset$param, function(x) x[[2]]))), c(1, 0.5, 0.1))
expect_equal(unique(lapply(adset$param, function(x) x[[3]])), list("SAMME"))
expect_false(attr(adset$param, "settings")$requiresDenseMatrix)
expect_equal(attr(adset$param, "settings")$name, "AdaBoost")
expect_equal(attr(adset$param, "settings")$pythonModule, "sklearn.ensemble")
expect_equal(attr(adset$param, "settings")$pythonClass, "AdaBoostClassifier")
inputs <- AdaBoostClassifierInputs(list, adset$param[[1]])
expect_equal(
names(inputs),
c("n_estimators", "learning_rate", "algorithm", "random_state")
)
})
test_that("setAdaBoost errors as expected", {
skip_if_not_installed("reticulate")
skip_on_cran()
expect_error(setAdaBoost(nEstimators = list(-1)))
expect_error(setAdaBoost(learningRate = list(-1)))
expect_error(setAdaBoost(algorithm = list(-1)))
expect_error(setAdaBoost(seed = list("seed")))
})
test_that("setMLP settings work checks", {
skip_if_not_installed("reticulate")
skip_on_cran()
mlpset <- setMLP(
hiddenLayerSizes = list(c(100), c(20, 4)), # must be integers
activation = list("relu"),
solver = list("adam"),
alpha = list(0.3, 0.01, 0.0001, 0.000001),
batchSize = list("auto"),
learningRate = list("constant"),
learningRateInit = list(0.001),
powerT = list(0.5),
maxIter = list(200, 100),
shuffle = list(TRUE),
tol = list(0.0001),
warmStart = list(TRUE),
momentum = list(0.9),
nesterovsMomentum = list(TRUE),
earlyStopping = list(FALSE),
validationFraction = list(0.1),
beta1 = list(0.9),
beta2 = list(0.999),
epsilon = list(1, 0.1, 0.00000001),
nIterNoChange = list(10),
seed = sample(100000, 1)
)
expect_equal(mlpset$fitFunction, "fitSklearn")
expect_equal(length(mlpset$param), 2 * 4 * 2 * 3)
expect_equal(unique(lapply(mlpset$param, function(x) x[[1]])), list(c(100), c(20, 4)))
expect_equal(unique(unlist(lapply(mlpset$param, function(x) x[[2]]))), "relu")
expect_equal(unique(unlist(lapply(mlpset$param, function(x) x[[4]]))), c(0.3, 0.01, 0.0001, 0.000001))
expect_equal(unique(lapply(mlpset$param, function(x) x[[9]])), list(200, 100))
expect_false(attr(mlpset$param, "settings")$requiresDenseMatrix)
expect_equal(attr(mlpset$param, "settings")$name, "Neural Network")
expect_equal(attr(mlpset$param, "settings")$pythonModule, "sklearn.neural_network")
expect_equal(attr(mlpset$param, "settings")$pythonClass, "MLPClassifier")
inputs <- MLPClassifierInputs(list, mlpset$param[[1]])
expect_equal(
names(inputs),
c(
"hidden_layer_sizes", "activation", "solver", "alpha", "batch_size",
"learning_rate", "learning_rate_init", "power_t", "max_iter", "shuffle",
"random_state", "tol", "verbose", "warm_start", "momentum", "nesterovs_momentum",
"early_stopping", "validation_fraction", "beta_1", "beta_2", "epsilon",
"n_iter_no_change"
)
)
})
test_that("setNaiveBayes settings work checks", {
skip_if_not_installed("reticulate")
skip_on_cran()
nbset <- setNaiveBayes()
expect_equal(nbset$fitFunction, "fitSklearn")
expect_equal(length(nbset$param), 1)
expect_true(attr(nbset$param, "settings")$requiresDenseMatrix)
expect_equal(attr(nbset$param, "settings")$name, "Naive Bayes")
expect_equal(attr(nbset$param, "settings")$pythonModule, "sklearn.naive_bayes")
expect_equal(attr(nbset$param, "settings")$pythonClass, "GaussianNB")
inputs <- GaussianNBInputs(list, nbset$param[[1]])
expect_equal(names(inputs), NULL)
})
test_that("setRandomForest settings work checks", {
skip_if_not_installed("reticulate")
skip_on_cran()
rfset <- setRandomForest(
ntrees = list(100, 500),
criterion = list("gini"),
maxDepth = list(4, 10, 17),
minSamplesSplit = list(2, 5),
minSamplesLeaf = list(1, 10),
minWeightFractionLeaf = list(0),
mtries = list("sqrt", "log2"),
maxLeafNodes = list(NULL),
minImpurityDecrease = list(0),
bootstrap = list(TRUE),
maxSamples = list(NULL, 0.9),
oobScore = list(FALSE),
nJobs = list(NULL),
classWeight = list(NULL),
seed = sample(100000, 1)
)
expect_equal(rfset$fitFunction, "fitSklearn")
expect_equal(length(rfset$param), 2 * 3 * 2 * 2 * 2 * 2 * 1)
expect_equal(unique(lapply(rfset$param, function(x) x[[1]])), list(100, 500))
expect_equal(unique(unlist(lapply(rfset$param, function(x) x[[3]]))), c(4, 10, 17))
expect_false(attr(rfset$param, "settings")$requiresDenseMatrix)
expect_equal(attr(rfset$param, "settings")$name, "Random forest")
expect_equal(attr(rfset$param, "settings")$pythonModule, "sklearn.ensemble")
expect_equal(attr(rfset$param, "settings")$pythonClass, "RandomForestClassifier")
inputs <- RandomForestClassifierInputs(list, rfset$param[[1]])
expect_equal(
names(inputs),
c(
"n_estimators", "criterion", "max_depth", "min_samples_split", "min_samples_leaf",
"min_weight_fraction_leaf", "max_features", "max_leaf_nodes", "min_impurity_decrease",
"bootstrap", "max_samples", "oob_score", "n_jobs", "random_state", "verbose",
"warm_start", "class_weight"
)
)
})
test_that("setSVM settings work checks", {
skip_if_not_installed("reticulate")
skip_on_cran()
svmset <- setSVM(
C = list(1, 0.9, 2, 0.1),
kernel = list("rbf"),
degree = list(1, 3, 5),
gamma = list("scale", 1e-04, 3e-05, 0.001, 0.01, 0.25),
coef0 = list(0.0),
shrinking = list(TRUE),
tol = list(0.001),
classWeight = list(NULL),
cacheSize = 500,
seed = sample(100000, 1)
)
expect_equal(svmset$fitFunction, "fitSklearn")
expect_equal(length(svmset$param), 4 * 3 * 6 * 1)
expect_equal(unique(lapply(svmset$param, function(x) x[[4]])), list("scale", 1e-04, 3e-05, 0.001, 0.01, 0.25))
expect_equal(unique(unlist(lapply(svmset$param, function(x) x[[1]]))), c(1, 0.9, 2, 0.1))
expect_false(attr(svmset$param, "settings")$requiresDenseMatrix)
expect_equal(attr(svmset$param, "settings")$name, "Support Vector Machine")
expect_equal(attr(svmset$param, "settings")$pythonModule, "sklearn.svm")
expect_equal(attr(svmset$param, "settings")$pythonClass, "SVC")
inputs <- SVCInputs(list, svmset$param[[1]])
expect_equal(
names(inputs),
c(
"C", "kernel", "degree", "gamma", "coef0",
"shrinking", "probability", "tol", "cache_size",
"class_weight", "verbose", "max_iter", "decision_function_shape",
"break_ties", "random_state"
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.