PeakSegFPOP: PeakSegFPOP

PeakSegFPOPR Documentation

PeakSegFPOP

Description

Find the optimal change-points using the Poisson loss and the PeakSeg constraint. For N data points, the functional pruning algorithm is O(N log N) time and memory. It recovers the exact solution to the following optimization problem. Let Z be an N-vector of count data (count.vec, non-negative integers), let W be an N-vector of positive weights (weight.vec), and let penalty be a non-negative real number. Find the N-vector M of real numbers (segment means) and (N-1)-vector C of change-point indicators in -1,0,1 which minimize the penalized Poisson Loss, penalty*sum_[i=1]^[N_1] I(c_i=1) + sum_[i=1]^N w_i*[m_i-z_i*log(m_i)], subject to constraints: (1) the first change is up and the next change is down, etc (sum_[i=1]^t c_i in 0,1 for all t<N-1), and (2) the last change is down 0=sum_[i=1]^[N-1] c_i, and (3) Every zero-valued change-point variable has an equal segment mean after: c_i=0 implies m_i=m_[i+1], (4) every positive-valued change-point variable may have an up change after: c_i=1 implies m_i<=m_[i+1], (5) every negative-valued change-point variable may have a down change after: c_i=-1 implies m_i>=m_[i+1]. Note that when the equality constraints are active for non-zero change-point variables, the recovered model is not feasible for the strict inequality constraints of the PeakSeg problem, and the optimum of the PeakSeg problem is undefined.

Usage

PeakSegFPOP(count.vec, 
    weight.vec = rep(1, 
        length(count.vec)), 
    penalty = NULL)

Arguments

count.vec

integer vector of length >= 3: non-negative count data to segment.

weight.vec

numeric vector (same length as count.vec) of positive weights.

penalty

non-negative numeric scalar: penalty parameter (smaller for more peaks, larger for fewer peaks).

Value

List of model parameters. count.vec, weight.vec, n.data, penalty (input parameters), cost.mat (optimal Poisson loss), ends.vec (optimal position of segment ends, 1-indexed), mean.vec (optimal segment means), intervals.mat (number of intervals stored by the functional pruning algorithm). To recover the solution in terms of (M,C) variables, see the example.

Author(s)

Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]

Examples


## Use the algo to compute the solution list.
library(PeakSegOptimal)
data("H3K4me3_XJ_immune_chunk1", envir=environment())
by.sample <-
  split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
n.data.vec <- sapply(by.sample, nrow)
one <- by.sample[[1]]
count.vec <- one$coverage
weight.vec <- with(one, chromEnd-chromStart)
penalty <- 1000
fit <- PeakSegFPOP(count.vec, weight.vec, penalty)

## Recover the solution in terms of (M,C) variables.
change.vec <- with(fit, rev(ends.vec[ends.vec>0]))
change.sign.vec <- rep(c(1, -1), length(change.vec)/2)
end.vec <- c(change.vec, fit$n.data)
start.vec <- c(1, change.vec+1)
length.vec <- end.vec-start.vec+1
mean.vec <- rev(fit$mean.vec[1:(length(change.vec)+1)])
M.vec <- rep(mean.vec, length.vec)
C.vec <- rep(0, fit$n.data-1)
C.vec[change.vec] <- change.sign.vec
diff.vec <- diff(M.vec)
data.frame(
  change=c(C.vec, NA),
  mean=M.vec,
  equality.constraint.active=c(sign(diff.vec) != C.vec, NA))
stopifnot(cumsum(sign(C.vec)) %in% c(0, 1))

## Compute penalized Poisson loss of M.vec and compare to the value reported
## in the fit solution list.
n.peaks <- sum(C.vec==1)
rbind(
  n.peaks*penalty + PoissonLoss(count.vec, M.vec, weight.vec),
  fit$cost.mat[2, fit$n.data])

## Plot the number of intervals stored by the algorithm.
FPOP.intervals <- data.frame(
  label=ifelse(as.numeric(row(fit$intervals.mat))==1, "up", "down"),
  data=as.numeric(col(fit$intervals.mat)),
  intervals=as.numeric(fit$intervals.mat))
library(ggplot2)
ggplot()+
  theme_bw()+
  theme(panel.margin=grid::unit(0, "lines"))+
  facet_grid(label ~ .)+
  geom_line(aes(data, intervals), data=FPOP.intervals)+
  scale_y_continuous(
    "intervals stored by the\nconstrained optimal segmentation algorithm")


PeakSegOptimal documentation built on Oct. 2, 2024, 9:06 a.m.