PeakSegPDPA | R Documentation |
Find the optimal change-points using the Poisson loss and the
PeakSeg constraint. For N data points and S segments, the
functional pruning algorithm is O(S*NlogN) space and O(S*NlogN)
time. It recovers the exact solution to the following optimization
problem. Let Z be an N-vector of count data (count.vec
,
non-negative integers) and let W be an N-vector of positive
weights (weight.vec
). Find the N-vector M of real numbers (segment
means) and (N-1)-vector C of change-point indicators in -1,0,1
which minimize the Poisson Loss, sum_[i=1]^N
w_i*[m_i-z_i*log(m_i)], subject to constraints: (1) there are
exactly S-1 non-zero elements of C, and (2) the first change is up
and the next change is down, etc (sum_[i=1]^t c_i in 0,1 for all
t<N), and (3) Every zero-valued change-point variable has an equal
segment mean after: c_i=0 implies m_i=m_[i+1], (4) every
positive-valued change-point variable may have an up change after:
c_i=1 implies m_i<=m_[i+1], (5) every negative-valued change-point
variable may have a down change after: c_i=-1 implies
m_i>=m_[i+1]. Note that when the equality constraints are active
for non-zero change-point variables, the recovered model is not
feasible for the strict inequality constraints of the PeakSeg
problem, and the optimum of the PeakSeg problem is undefined.
PeakSegPDPA(count.vec,
weight.vec = rep(1,
length(count.vec)),
max.segments = NULL)
count.vec |
integer vector of count data. |
weight.vec |
numeric vector (same length as |
max.segments |
integer of length 1: maximum number of segments (must be >= 2). |
List of model parameters. count.vec
, weight.vec
, n.data,
max.segments
(input parameters), cost.mat (optimal Poisson loss),
ends.mat (optimal position of segment ends, 1-indexed), mean.mat
(optimal segment means), intervals.mat (number of intervals stored
by the functional pruning algorithm). To recover the solution in
terms of (M,C) variables, see the example.
Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]
## Use the algo to compute the solution list.
data("H3K4me3_XJ_immune_chunk1", envir=environment())
by.sample <-
split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
n.data.vec <- sapply(by.sample, nrow)
one <- by.sample[[1]]
count.vec <- one$coverage
weight.vec <- with(one, chromEnd-chromStart)
max.segments <- 19L
fit <- PeakSegPDPA(count.vec, weight.vec, max.segments)
## Recover the solution in terms of (M,C) variables.
n.segs <- 11L
change.vec <- fit$ends.mat[n.segs, 2:n.segs]
change.sign.vec <- rep(c(1, -1), length(change.vec)/2)
end.vec <- c(change.vec, fit$n.data)
start.vec <- c(1, change.vec+1)
length.vec <- end.vec-start.vec+1
mean.vec <- fit$mean.mat[n.segs, 1:n.segs]
M.vec <- rep(mean.vec, length.vec)
C.vec <- rep(0, fit$n.data-1)
C.vec[change.vec] <- change.sign.vec
diff.vec <- diff(M.vec)
data.frame(
change=c(C.vec, NA),
mean=M.vec,
equality.constraint.active=c(sign(diff.vec) != C.vec, NA))
stopifnot(cumsum(sign(C.vec)) %in% c(0, 1))
## Compute Poisson loss of M.vec and compare to the value reported
## in the fit solution list.
rbind(
PoissonLoss(count.vec, M.vec, weight.vec),
fit$cost.mat[n.segs, fit$n.data])
## Plot the number of intervals stored by the algorithm.
PDPA.intervals <- data.frame(
segments=as.numeric(row(fit$intervals.mat)),
data=as.numeric(col(fit$intervals.mat)),
intervals=as.numeric(fit$intervals.mat))
some.intervals <- subset(PDPA.intervals, segments<data & 1<segments)
library(ggplot2)
ggplot()+
theme_bw()+
theme(panel.margin=grid::unit(0, "lines"))+
facet_grid(segments ~ .)+
geom_line(aes(data, intervals), data=some.intervals)+
scale_y_continuous(
"intervals stored by the\nconstrained optimal segmentation algorithm",
breaks=c(20, 40))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.