PeakSegPDPAInf | R Documentation |
Find the optimal change-points using the Poisson loss and the PeakSeg constraint. This function is an interface to the C++ code which always uses -Inf for the first interval's lower limit and Inf for the last interval's upper limit – it is for testing the number of intervals between the two implementations.
PeakSegPDPAInf(count.vec,
weight.vec = rep(1,
length(count.vec)),
max.segments = NULL)
count.vec |
integer vector of count data. |
weight.vec |
numeric vector (same length as |
max.segments |
integer of length 1: maximum number of segments (must be >= 2). |
List of model parameters. count.vec
, weight.vec
, n.data,
max.segments
(input parameters), cost.mat (optimal Poisson loss),
ends.mat (optimal position of segment ends, 1-indexed), mean.mat
(optimal segment means), intervals.mat (number of intervals stored
by the functional pruning algorithm). To recover the solution in
terms of (M,C) variables, see the example.
Toby Dylan Hocking <toby.hocking@r-project.org> [aut, cre]
## Use the algo to compute the solution list.
library(PeakSegOptimal)
data("H3K4me3_XJ_immune_chunk1", envir=environment())
by.sample <-
split(H3K4me3_XJ_immune_chunk1, H3K4me3_XJ_immune_chunk1$sample.id)
n.data.vec <- sapply(by.sample, nrow)
one <- by.sample[[1]]
count.vec <- one$coverage
weight.vec <- with(one, chromEnd-chromStart)
max.segments <- 19L
library(data.table)
ic.list <- list()
for(fun.name in c("PeakSegPDPA", "PeakSegPDPAInf")){
fun <- get(fun.name)
fit <- fun(count.vec, weight.vec, max.segments)
ic.list[[fun.name]] <- data.table(
fun.name,
segments=as.numeric(row(fit$intervals.mat)),
data=as.numeric(col(fit$intervals.mat)),
cost=as.numeric(fit$cost.mat),
intervals=as.numeric(fit$intervals.mat))
}
ic <- do.call(rbind, ic.list)[0 < intervals]
intervals <- dcast(ic, data + segments ~ fun.name, value.var="intervals")
cost <- dcast(ic, data + segments ~ fun.name, value.var="cost")
not.equal <- cost[PeakSegPDPA != PeakSegPDPAInf]
stopifnot(nrow(not.equal)==0)
intervals[, increase := PeakSegPDPAInf-PeakSegPDPA]
table(intervals$increase)
quantile(intervals$increase)
ic[, list(
mean=mean(intervals),
max=max(intervals)
), by=list(fun.name)]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.