| PearsonII | R Documentation |
Density, distribution function, quantile function and random generation for the Pearson type II (aka symmetric Beta) distribution.
dpearsonII(x, a, location, scale, params, log = FALSE)
ppearsonII(q, a, location, scale, params, lower.tail = TRUE,
log.p = FALSE)
qpearsonII(p, a, location, scale, params, lower.tail = TRUE,
log.p = FALSE)
rpearsonII(n, a, location, scale, params)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
a |
shape parameter of Pearson type II distribution. |
location |
location parameter of Pearson type II distribution. |
scale |
scale parameter of Pearson type II distribution. |
params |
vector/list of length 3 containing parameters |
log, log.p |
logical; if |
lower.tail |
logical; if |
Essentially, Pearson type II distributions are (location-scale transformations
of) symmetric Beta distributions, the above
functions are thus simple wrappers for dbeta, pbeta,
qbeta and rbeta contained in package stats.
The probability density function with parameters a,
scale=s and location=\lambda
is given by
f(x)=\frac{1}{|s|}\frac{\Gamma(2a)}{\Gamma(a)^2}\left(\frac{x-\lambda}{s}\cdot
\left(1-\frac{x-\lambda}{s}\right)\right)^{a-1}
for a>0, s\ne 0,
0<\frac{x-\lambda}{s}<1.
dpearsonII gives the density, ppearsonII gives the
distribution function, qpearsonII gives the quantile function,
and rpearsonII generates random deviates.
Martin Becker martin.becker@mx.uni-saarland.de
See the references in Beta.
Beta,
PearsonDS-package,
Pearson
## define Pearson type II parameter set with a=2, location=1, scale=2
pIIpars <- list(a=2, location=1, scale=2)
## calculate probability density function
dpearsonII(seq(1,3,by=0.5),params=pIIpars)
## calculate cumulative distribution function
ppearsonII(seq(1,3,by=0.5),params=pIIpars)
## calculate quantile function
qpearsonII(seq(0.1,0.9,by=0.2),params=pIIpars)
## generate random numbers
rpearsonII(5,params=pIIpars)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.