| PearsonVII | R Documentation |
Density, distribution function, quantile function and random generation for the Pearson type VII (aka Student's t) distribution.
dpearsonVII(x, df, location, scale, params, log = FALSE)
ppearsonVII(q, df, location, scale, params, lower.tail = TRUE,
log.p = FALSE)
qpearsonVII(p, df, location, scale, params, lower.tail = TRUE,
log.p = FALSE)
rpearsonVII(n, df, location, scale, params)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. |
df |
degrees of freedom of Pearson type VII distribution |
location |
location parameter of Pearson type VII distribution. |
scale |
scale parameter of Pearson type VII distribution. |
params |
vector/list of length 3 containing parameters |
log, log.p |
logical; if |
lower.tail |
logical; if |
The Pearson type VII distribution is a simple (location-scale) transformation
of the well-known Student's t distribution; the probability density function
with parameters df=n, location=\lambda and
scale=s is given by
f(x) = \frac{1}{|s|}\frac{\Gamma(\frac{n+1}{2})}{\sqrt{n \pi} \Gamma(\frac{n}{2})}
\left(1 + \frac{(\frac{x-\lambda}{s})^2}{n}\right)^{-\frac{n+1}{2}}
for s\ne 0.
The above functions are thus only wrappers for dt,
pt, qt and rt contained in package
stats.
dpearsonVII gives the density, ppearsonVII gives the
distribution function, qpearsonVII gives the quantile function,
and rpearsonVII generates random deviates.
Martin Becker martin.becker@mx.uni-saarland.de
See the references in TDist.
TDist,
PearsonDS-package,
Pearson
## define Pearson type VII parameter set with df=7, location=1, scale=1
pVIIpars <- list(df=7, location=1, scale=1)
## calculate probability density function
dpearsonVII(-2:4,params=pVIIpars)
## calculate cumulative distribution function
ppearsonVII(-2:4,params=pVIIpars)
## calculate quantile function
qpearsonVII(seq(0.1,0.9,by=0.2),params=pVIIpars)
## generate random numbers
rpearsonVII(5,params=pVIIpars)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.