lmm | R Documentation |
Learn the parameter of the distribution of a sample of n permutations comming from a Mallows Model (MM).
lmm(
data,
sigma_0_ini = identity.permutation(dim(data)[2]),
dist.name = "kendall",
estimation = "approx",
disk = FALSE
)
data |
the matrix with the permutations to estimate |
sigma_0_ini |
optional the initial guess for the consensus permutation |
dist.name |
optional the name of the distance used by the model. One of: kendall (default), cayley, hamming, ulam |
estimation |
optional select the approximated or the exact. One of: approx, exact |
disk |
optional can only be true if estimating a MM under the Ulam distance. Insted of generating the whole set of SYT and count of permutations per distance, it loads the info from a file in the disk |
A list with the parameters of the estimated distribution: the mode and the dispersion parameter
"Ekhine Irurozki, Borja Calvo, Jose A. Lozano (2016). PerMallows: An R Package for Mallows and Generalized Mallows Models. Journal of Statistical Software, 71(12), 1-30. doi:10.18637/jss.v071.i12"
data <- matrix(c(1,2,3,4, 1,4,3,2, 1,2,4,3), nrow = 3, ncol = 4, byrow = TRUE)
lmm(data, dist.name="kendall", estimation="approx")
lmm(data, dist.name="cayley", estimation="approx")
lmm(data, dist.name="cayley", estimation="exact")
lmm(data, dist.name="hamming", estimation="exact")
lmm(data, dist.name="ulam", estimation="approx")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.