Nothing
knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
knitr::opts_chunk$set( collapse = TRUE, comment = "#>", message = FALSE, warning = FALSE, fig.width = 7 ) library(CDMConnector) if (Sys.getenv("EUNOMIA_DATA_FOLDER") == "") Sys.setenv("EUNOMIA_DATA_FOLDER" = tempdir()) if (!dir.exists(Sys.getenv("EUNOMIA_DATA_FOLDER"))) dir.create(Sys.getenv("EUNOMIA_DATA_FOLDER")) if (!eunomiaIsAvailable()) downloadEunomiaData(datasetName = "synpuf-1k")
In this example we're going to again create cohorts of individuals with an ankle sprain, ankle fracture, forearm fracture, or a hip fracture using the Eunomia synthetic data.
library(CDMConnector) library(CohortConstructor) library(CodelistGenerator) library(PatientProfiles) library(CohortCharacteristics) library(PhenotypeR) library(dplyr) library(ggplot2) con <- DBI::dbConnect(duckdb::duckdb(), CDMConnector::eunomiaDir("synpuf-1k", "5.3")) cdm <- CDMConnector::cdmFromCon(con = con, cdmName = "Eunomia Synpuf", cdmSchema = "main", writeSchema = "main", achillesSchema = "main") cdm$injuries <- conceptCohort(cdm = cdm, conceptSet = list( "ankle_sprain" = 81151, "ankle_fracture" = 4059173, "forearm_fracture" = 4278672, "hip_fracture" = 4230399 ), name = "injuries")
Running the matchedDiagnostics()
will compare the individuals in our cohorts with age and sex matched controls from the data source. This helps us to find features of our cohort that are particularly distinctive.
matched_diag <- matchedDiagnostics(cdm$injuries)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.